当前位置:   article > 正文

【动手学深度学习-Pytorch版】门控循环单元GRU_门控循环单元公式

门控循环单元公式

关于GRU的笔记

支持隐状态的门控:这意味着模型有专门的机制来确定应该何时更新隐状态, 以及应该何时重置隐状态。 这些机制是可学习的,并且能够解决了上面列出的问题。 例如,如果第一个词元非常重要, 模型将学会在第一次观测之后不更新隐状态。 同样,模型也可以学会跳过不相关的临时观测。 最后,模型还将学会在需要的时候重置隐状态。 下面我们将详细讨论各类门控。

formula:门 是和隐藏状态同样的一个向量
重置门: R t = σ ( X t ∗ W x r + H t − 1 ∗ W h r + b r ) R_t = σ(X_t * W_{xr} + H_{t-1} * W_{hr} + b_r) Rt=σ(XtWxr+Ht1Whr+br)
更新门: Z t = σ ( X t ∗ W x z + H t − 1 ∗ W h z + b z ) Z_t = σ(X_t * W_{xz} + H_{t-1} * W_{hz} + b_z) Zt=σ(XtWxz+Ht1Whz+bz)

候选隐状态
☆ H t = t a n h ( X t ∗ W x h + ( R t ⊙ H t − 1 ) ∗ W h h + b h ) ^☆H_t = tanh(X_t * W_{xh} + (R_t ⊙ H_{t-1}) * W_{hh} + b_h) Ht=tanh(XtWxh+(RtHt1)Whh+bh)
当重置门的项接近于1时,就可以恢复到一个普通的循环神经网络RNN的模型对于重置门的项接近于0时,候选隐状态是以X_t作为输入的多层感知机的结果,它除去了隐状态H_t-1对当前的影响任何预先存在的隐状态都会被重置为默认值

隐状态
更新门Z_t仅需要在H_t-1和(star)H_t之间进行按元素的凸组合就可以实现这个目标。
H t = Z t ⊙ H t − 1 + ( 1 − Z t ) ⊙ ☆ H t H_t = Z_t ⊙ H_{t-1} + (1 - Z_t) ⊙ ^☆H_t Ht=ZtHt1+(1Zt)Ht
每当更新门{Z_t}接近于1时,模型就倾向于只保留旧状态,此时来自于 X t X_t Xt的信息基本上都会被忽略,当前的隐状态只依赖于上一次的 H ( t − 1 ) H_(t-1) H(t1)相反,当 Z t Z_t Zt接近于0时,新的隐状态 H t H_t Ht就会接近于候选隐状态 ☆ H t ^☆H_t Ht
优点:这些设计可以帮助我们处理循环神经网络中的梯度消失的问题,并且更好地捕获时间步距离很长的序列的依赖关系。例如:如果整个子序列的所有时间步的更新门都接近于1,则无论序列的长度如何,在序列起始时间步的旧隐状态都很容易保留并传递到序列的结束。
在这里插入图片描述
在这里插入图片描述

综上
重置门有助于捕获序列中的短期依赖关系;
更新门有助于捕获序列中的长期依赖关系。

GRU从零开始实现

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)


# 初始化模型参数
def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device) * 0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xz, W_hz, b_z = three()  # 更新门参数
    W_xr, W_hr, b_r = three()  # 重置门参数
    W_xh, W_hh, b_h = three()  # 候选隐状态参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params


# 定义模型
def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device),)


# gru模型
def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        # 更新门:Z_t = σ(X_t * W_xz + H_T-1 * W_hz + bz)
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        # 重置门:R_t = σ(X_t * W_xr + H_t - 1 * W_hr + br)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        # (star)H_t = tanh(X_t * W_xh + (R_t ⊙ H_t-1) * W_hh + bh)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)
        # H_t = Z_t ⊙ H_t - 1 + (1 - Z_t) ⊙ (star)H_t
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)


# 训练与预测
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500,1
model = d2l.RNNModelScratch(len(vocab),num_hiddens,device,get_params,init_gru_state,gru)

d2l.train_ch8(model,train_iter,vocab,lr,num_epochs,device)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64

在这里插入图片描述

简洁实现GRU

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)


vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1

num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/知新_RL/article/detail/101484
推荐阅读
相关标签
  

闽ICP备14008679号