赞
踩
图像检索,简单的说,便是从图片检索数据库中检索出满足条件的图片,图像检索技术的研究根据描述图像内容方式的不同可以分为两类:
一类是基于文本的图像检索技术,简称TBIR,
一类为基于内容的图像检索技术,简称CBIR。
基于文本的图像检索(TBIR)技术,其主要原理为利用文本描述,如文本描述图片的内容、作者等等的方式来检索图片;
基于图像的内容语义的图像检索技术(CBIR),利用图片的颜色、纹理及图片包含的物体、类别等信息检索图片,如给定检索目标图片,在图像检索数据库中检索出与它相似的图片。
基于图像的内容语义的图像检索包括相同物体图像检索和相同类别图像检索,检索任务分别为检索同一个物体地不同图片和检索同一个类别地图片。例如,行人检索中检索的是同一个人即同一个身份在不同场景不同摄像头下拍得的图片属于相同物体的图像检索,而在3D形状检索中则是检索属于同一类的物品,如飞机等。
在大型数据库上,CBIR(Content-Based Image Retrieval,基于内容的图像检索)技术用于检索在视觉上具有相似性的图像。这样返回的图像可以是颜色相似,纹理相似,图像中的物体或场景相似;总之,基本上可以是这些图像自身共有的任何信息。
对于高层查询,比如寻找相似的物体,将查询图像与数据库中所有的图像进行完全比较(比如用特征匹配)往往是不可行的。在数据库很大的情况下,这样的查询方式会消耗过多时间。在过去的几年里,研究者成功地引入文本挖掘技术到CBIR中处理问题,使在数百万图像中搜索具有相似内容的图像成为可能。
从文本挖掘中获取灵感——矢量空间模型
矢量空间模型是用于表示和搜索文本文档的模型。我们将看到,它基本上可以应用于任何对象类型,包括图像。该名字来源于用矢量来表示文本文档,这些矢量是有文本词频直方图构成的。换句话说,矢量包含了每个单词出现的次数,而且在其他别的地方包含很多0元素。由于其忽略了单词出现的顺序及位置,该模型也被称为BOW表示模型。
通过单词计算来构建文档直方图向量v,从而建立文档索引。通常,在单词计数时会忽略掉一些常用词,如“这”“和”“是”等,这些常用词称为停用词。由于每篇文档长度不同,故除以直方图总和将向量归一化成单位长度。对于直方图向量中的每个元素,一般根据每个单词的重要性来赋予相应的权重。通常,数据集(或语料库)中一个单词的重要性来赋予相应的权重。通常,数据集(或语料库)中一个单词的重要性与它在文档中出现的次数成正比,而与它在语料库中出现的次数为反比。
最常用的权重是tf-idf(term frequency-inverse document frequency,词频-逆向文档频率),单词w在文档d中的词频是:
nw是单词w在文档d中出现的次数。为了归一化,将nw除以整个文档中单词的总数。
逆向文档频率为:
|D|是在语料库D中文档的数目,分母是语料库中包含单词w的文档数d。将两者相乘可以得到矢量v中对应元素的tf-idf权重。关于tf-idf,详见http://en.wikipedia.org/wiki/Tf-idf.
Bag-of-Words模型源于文本分类技术。在信息检索中,它假定对于一个文本,忽略其词序、语法和句法,将其仅仅看作是一个词集合,或者说是词的一个组合。文本中每个词的出现都是独立的,不依赖于其他词是否出现,或者说这篇文章的作者在任意一个位置选择词汇都不受前面句子的影响而独立选择的。
Bag-of-words在CV中的应用首先出现在Andrew Zisserman中为解决对视频场景的搜索,其提出了使用Bag-of-words关键点投影的方法来表示图像信息。后续更多的研究者归结此方法为Bag-of-Features,并用于图像分类、目标识别和图像检索。Bag-of-Features模型仿照文本检索领域的Bag-of-Words方法,把每幅图像描述为一个局部区域或关键点(Patches/Key Points)特征的无序集合,这些特征点可以看成一个词。这样,就能够把文本检索及分类的方法用到图像分类及检索中去。
使用某种聚类算法(如K-means)将特征进行聚类,每个聚类中心被看作是词典中的一个视觉词汇(Visual Word),相当于文本检索中的词,视觉词汇由聚类中心对应特征形成的码字(code word)来表示(可看当为一种特征量化过程)。所有视觉词汇形成一个视觉词典(Visual Vocabulary),对应一个码书(code book),即码字的集合,词典中所含词的个数反映了词典的大小。图像中的每个特征都将被映射到视觉词典的某个词上,这种映射可以通过计算特征间的距离去实现。然后,统计每个视觉词的出现与否或次数,图像可描述为一个维数相同的直方图向量,即Bag-of-Features。在Bag-of-Features方法的基础上,Andrew Zisserman进一步借鉴文本检索中TF-IDF模型(Term Frequency一Inverse Document Frequency)来计算Bag-of-Features特征向量。接下来便可以使用文本搜索引擎中的反向索引技术对图像建立索引,高效的进行图像检索。
Bag-of-Features更多地是用于图像分类或对象识别。在上述思路下对训练集提取Bag-of-Features特征,在某种监督学习(如:SVM)的策略下,对训练集的Bag-of-Features特征向量进行训练,获得对象或场景的分类模型;对于待测图像,提取局部特征,计算局部特征与词典中每个码字的特征距离,选取最近距离的码字代表该特征,建立一个统计直方图,统计属于每个码字的特征个数,即为待测图像的Bag-of-Features特征;在分类模型下,对该特征进行预测,从而实现对待测图像的分类。
为了将文本发掘技术应用到图像中,我们首先需要建立视觉等效单词;这通常可以采用2.2节中介绍的SIFT局部描述子做到。它的思想是将描述子空间量化成一些典型实例,并将图像中的每个描述子指派到其中的某个实例中。这些典型实例可以通过分析训练图像集确定,并被视为视觉单词。所有这些视觉单词构成的集合称为视觉词汇,有时也称为视觉码本。对于给定的问题、图像类型,或在通常情况下仅需呈现视觉内容,可以创建特定的词汇。
从一个(很大的训练图像)集提取特征描述子,利用一些聚类算法可以构建出视觉单词。聚类算法中最常用的是K-means,这里也将采用K-means。视觉单词并不高端。只是在给定特征描述子空间中的一组向量集,在采用K-means进行聚类时得到的视觉单词是聚类质心。用视觉单词直方图来表示图像,则该模型便称为BOW模型。
构建BOW词汇步骤:
1)利用SIFT算法从不同类别的图像中提取视觉词汇向量,这些向量代表的是图像中局部不变的特征点;
2)将所有特征点向量集合到一块,利用K-Means算法合并词义相近的视觉词汇,构造一个包含K个词汇的单词表;
3)统计单词表中每个单词在图像中出现的次数,从而将图像表示成为一个K维数值向量。
为创建视觉单词词汇,首先需要提取特征描述子。
这里,我们使用SIFT特征描述子。
datasets是你存储图片的文件夹:
import pickle from PCV.imagesearch import vocabulary from PCV.tools.imtools import get_imlist from PCV.localdescriptors import sift from PCV.imagesearch import imagesearch from PCV.geometry import homography from sqlite3 import dbapi2 as sqlite #获取图像列表 imlist = get_imlist('datasets/') nbr_images = len(imlist) #获取特征列表 featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)] #提取文件夹下图像的sift特征 for i in range(nbr_images): sift.process_image(imlist[i], featlist[i]) #生成词汇 voc = vocabulary.Vocabulary('ukbenchtest') voc.train(featlist, 888, 10) # 使用k-means算法在featurelist里边训练处一个词汇 # 注意这里使用了下采样的操作加快训练速度 # 将描述子投影到词汇上,以便创建直方图 #保存词汇 # saving vocabulary with open('BOW/vocabulary.pkl', 'wb') as f: pickle.dump(voc, f) print ('vocabulary is:', voc.name, voc.nbr_words)
会在根目录生成一个文件:
对图像进行索引就是从这些图像中提取描述子,利用词汇将描述子转换成视觉单词,并保存视觉单词及对应图像的单词直方图。从而可以利用图像对数据库进行查询,并返回相似的图像作为搜索结果。在开始搜索之前,需要建立图像数据库和图像的视觉单词表示。
在索引图像前,我们需要建立一个数据库。这里,对图像进行索引就是从这些图像中提取描述子,利用词汇将描述子转换成视觉单词,并保存视觉单词及对应图像的单词直方图。从而可以利用图像对数据库进行查询,并返回相似的图像作为搜索结果。
在开始之前,首先需要创建表、索引和索引器 Indexer 类,以便将图像数据写入数据库:
import pickle from PCV.imagesearch import vocabulary from PCV.tools.imtools import get_imlist from PCV.localdescriptors import sift from PCV.imagesearch import imagesearch from PCV.geometry import homography from sqlite3 import dbapi2 as sqlite # 使用sqlite作为数据库 #获取图像列表 imlist = get_imlist('datasets/') nbr_images = len(imlist) #获取特征列表 featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)] # load vocabulary #载入词汇 with open('BOW/vocabulary.pkl', 'rb') as f: voc = pickle.load(f) #创建索引 indx = imagesearch.Indexer('testImaAdd.db',voc) # 在Indexer这个类中创建表、索引,将图像数据写入数据库 indx.create_tables() # 创建表 # go through all images, project features on vocabulary and insert #遍历所有的图像,并将它们的特征投影到词汇上 for i in range(nbr_images)[:888]: locs,descr = sift.read_features_from_file(featlist[i]) indx.add_to_index(imlist[i],descr) # 使用add_to_index获取带有特征描述子的图像,投影到词汇上 # 将图像的单词直方图编码存储 # commit to database #提交到数据库 indx.db_commit() con = sqlite.connect('testImaAdd.db') print (con.execute('select count (filename) from imlist').fetchone()) print (con.execute('select * from imlist').fetchone())
q_ind = 0
nbr_results = 125
q_ind是你匹配是用到的第一张图片位置
nbr_results是你需要的匹配的图片,可以小于,但是不可以大于。比如说你有100张图片,你可以选择匹配50张,但是不能匹配101张。
代码:
# -*- coding: utf-8 -*- #使用视觉单词表示图像时不包含图像特征的位置信息 import pickle from PCV.localdescriptors import sift from PCV.imagesearch import imagesearch from PCV.geometry import homography from PCV.tools.imtools import get_imlist # load image list and vocabulary #载入图像列表 #imlist = get_imlist('E:/Python37_course/test7/first1000/') imlist = get_imlist('datasets/') nbr_images = len(imlist) #载入特征列表 featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)] #载入词汇 '''with open('E:/Python37_course/test7/first1000/vocabulary.pkl', 'rb') as f: voc = pickle.load(f)''' with open('BOW/vocabulary.pkl', 'rb') as f: voc = pickle.load(f) src = imagesearch.Searcher('testImaAdd.db',voc)# Searcher类读入图像的单词直方图执行查询 # index of query image and number of results to return #查询图像索引和查询返回的图像数 q_ind = 0 nbr_results = 125 # regular query # 常规查询(按欧式距离对结果排序) res_reg = [w[1] for w in src.query(imlist[q_ind])[:nbr_results]] # 查询的结果 print ('top matches (regular):', res_reg) # load image features for query image #载入查询图像特征进行匹配 q_locs,q_descr = sift.read_features_from_file(featlist[q_ind]) fp = homography.make_homog(q_locs[:,:2].T) # RANSAC model for homography fitting #用单应性进行拟合建立RANSAC模型 model = homography.RansacModel() rank = {} # load image features for result #载入候选图像的特征 for ndx in res_reg[1:]: try: locs,descr = sift.read_features_from_file(featlist[ndx]) except: continue #locs,descr = sift.read_features_from_file(featlist[ndx]) # because 'ndx' is a rowid of the DB that starts at 1 # get matches matches = sift.match(q_descr,descr) ind = matches.nonzero()[0] ind2 = matches[ind] tp = homography.make_homog(locs[:,:2].T) # compute homography, count inliers. if not enough matches return empty list # 计算单应性矩阵 try: H,inliers = homography.H_from_ransac(fp[:,ind],tp[:,ind2],model,match_theshold=4) except: inliers = [] # store inlier count rank[ndx] = len(inliers) # sort dictionary to get the most inliers first # 对字典进行排序,可以得到重排之后的查询结果 sorted_rank = sorted(rank.items(), key=lambda t: t[1], reverse=True) res_geom = [res_reg[0]]+[s[0] for s in sorted_rank] print ('top matches (homography):', res_geom) # 显示查询结果 imagesearch.plot_results(src,res_reg[:16]) #常规查询 imagesearch.plot_results(src,res_geom[:16]) #重排后的结果
结果图:
这里我使用的图片是500*285的大小,所以可能比较小。因为图片越大运行的时间要越长,当然搜的图片越多,时间也会越长。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。