赞
踩
一. 提出背景
目标检测在图像处理领域有着非常大的占比,过去两年,深度学习在Detection的持续发力,为这个领域带来了变革式的发展:一方面,从 RCNN 到 Fast RCNN,再到 Faster RCNN,不断刷新 mAP;另一方面,SSD、YOLO 则是将性能提高到一个非常高的帧率。
对于视频来讲,相邻帧目标之间存在 明显的上下文关系,这种关系在技术上的表现就是 Tracking,研究过跟踪的童鞋都应该知道 经典算法 TLD,通过 Tracking-Learning-Detection 学习目标的帧间变换,并进行 Location。
基于视频的目标检测 要解决的是同样的问题,因为 变形、遮挡、运动Blur 等因素导致目标 在 中间帧无法检测到(Appearence 发生很大变化),可以从下图看到,基于 still-image 的方法在某些帧的检测置信度很低。
VID(object-detection-from-video) 在2015年已成为一个 Challenge 方向,主要思路是结合帧间的 Context 信息、Tracking信息,接下来我们要讲的算法 TCNN。
论文名称: T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos
二. T-CNN
论文下载:【arvix】
代码下载:【Github】
闲话不说,直接给出框架图:
算法分为四个步骤&
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。