赞
踩
回归任务概述:通过pytorch搭建神经网络,进行气温的预测
回归任务可以看作 y = kx + b
y为需要进行回归预测的值
下面对实验步骤进行整理
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
主要包括了相关的科学计算库,和torch中的优化器
features = pd.read_csv('temps.csv')
#看看数据长什么样子
features.head()
数据表中
查看并输出数据的维度
数据维度: (348, 9)
print('数据维度:', features.shape)
# 处理时间数据
import datetime
# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']
# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
dates[:5]
设置子图布局完成子图的绘制 4个子图
时间设置倾斜
# 准备画图 # 指定默认风格 plt.style.use('fivethirtyeight') # 设置布局 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10)) fig.autofmt_xdate(rotation = 45) # 标签值 ax1.plot(dates, features['actual']) ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp') # 昨天 ax2.plot(dates, features['temp_1']) ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp') # 前天 ax3.plot(dates, features['temp_2']) ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp') # 我的逗逼朋友 ax4.plot(dates, features['friend']) ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate') plt.tight_layout(pad=2)
# 独热编码
features = pd.get_dummies(features)
features.head(5)
去除特征中的标签项
# 标签
labels = np.array(features['actual'])
# 在特征中去掉标签
features= features.drop('actual', axis = 1)
# 名字单独保存一下,以备后患
feature_list = list(features.columns)
# 转换成合适的格式
features = np.array(features)
查看新的数据特征的维度
features.shape
使用sklearn库结合标准正态分布的相关理论对整体的数据进行标准化的处理
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
input_features[0]
将narrdry格式转化为tensor(张量)进行输入
x = torch.tensor(input_features, dtype = float)
y = torch.tensor(labels, dtype = float)
在神经网络的隐层中设置128个神经元,因为每一条数据拥有14个特征,因此设置一个14x128的特征矩阵,这时的b1需要更新的此时为128x1
在进行结果输出是,只需要输出一个结果所以定义一个128*1的特征矩阵,此时的b2只需要更新1次
# 权重参数初始化
weights = torch.randn((14, 128), dtype = float, requires_grad = True)
biases = torch.randn(128, dtype = float, requires_grad = True)
weights2 = torch.randn((128, 1), dtype = float, requires_grad = True)
biases2 = torch.randn(1, dtype = float, requires_grad = True)
设置学习率和损失值
learning_rate = 0.001
losses = []
通过矩阵的乘法计算w1x+b1
计算隐层
hidden = x.mm(weights) + biases
加入激活函数进行非线性处理
加入激活函数
hidden = torch.relu(hidden)
之后通过w2和b2来计算与预测的结果
预测结果
predictions = hidden.mm(weights2) + biases2
通过与真实结果的比较来计算损失函数,结合反向传播的算法更新参数信息,沿着梯度值的方向和学习率进行更新操作
#返向传播计算
loss.backward()
#更新参数
weights.data.add_(- learning_rate * weights.grad.data)
biases.data.add_(- learning_rate * biases.grad.data)
weights2.data.add_(- learning_rate * weights2.grad.data)
biases2.data.add_(- learning_rate * biases2.grad.data)
梯度的反方向进行更新
迭代完成之后进行清0处理
每次迭代都得记得清空
weights.grad.data.zero_()
biases.grad.data.zero_()
weights2.grad.data.zero_()
biases2.grad.data.zero_()
x = torch.tensor(input_features, dtype = float) y = torch.tensor(labels, dtype = float) # 权重参数初始化 weights = torch.randn((14, 128), dtype = float, requires_grad = True) biases = torch.randn(128, dtype = float, requires_grad = True) weights2 = torch.randn((128, 1), dtype = float, requires_grad = True) biases2 = torch.randn(1, dtype = float, requires_grad = True) learning_rate = 0.001 losses = [] for i in range(1000): # 计算隐层 hidden = x.mm(weights) + biases # 加入激活函数 hidden = torch.relu(hidden) # 预测结果 predictions = hidden.mm(weights2) + biases2 # 通计算损失 loss = torch.mean((predictions - y) ** 2) losses.append(loss.data.numpy()) # 打印损失值 if i % 100 == 0: print('loss:', loss) #返向传播计算 loss.backward() #更新参数 weights.data.add_(- learning_rate * weights.grad.data) biases.data.add_(- learning_rate * biases.grad.data) weights2.data.add_(- learning_rate * weights2.grad.data) biases2.data.add_(- learning_rate * biases2.grad.data) # 每次迭代都得记得清空 weights.grad.data.zero_() biases.grad.data.zero_() weights2.grad.data.zero_() biases2.grad.data.zero_()
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16 #16个批次进行训练
my_nn = torch.nn.Sequential(
torch.nn.Linear(input_size, hidden_size),
torch.nn.Sigmoid(),
torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
训练网络得到对应的结果
# 训练网络 losses = [] for i in range(1000): batch_loss = [] # MINI-Batch方法来进行训练 for start in range(0, len(input_features), batch_size): end = start + batch_size if start + batch_size < len(input_features) else len(input_features) xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True) yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True) prediction = my_nn(xx) loss = cost(prediction, yy) optimizer.zero_grad() loss.backward(retain_graph=True) optimizer.step() batch_loss.append(loss.data.numpy()) # 打印损失 if i % 100==0: losses.append(np.mean(batch_loss)) print(i, np.mean(batch_loss))
其中红色代表的是与预测值
# 转换日期格式 dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)] dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates] # 创建一个表格来存日期和其对应的标签数值 true_data = pd.DataFrame(data = {'date': dates, 'actual': labels}) # 同理,再创建一个来存日期和其对应的模型预测值 months = features[:, feature_list.index('month')] days = features[:, feature_list.index('day')] years = features[:, feature_list.index('year')] test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)] test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates] predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)}) # 真实值 plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual') # 预测值 plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction') plt.xticks(rotation = '60'); plt.legend() # 图名 plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');
此时并没有出现预测值过拟合的问题
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。