赞
踩
基本原理
关于机器人运动控制系统架构,在《ros by example》 chapter 7一章第二节中介绍了控制机器人的5个层次,从低到高依次是:motor controllers anddrivers-> ROS base controller ->Frame-Base Motion(move_base)->Frame-Base Motion(gmapping + amcl)->Semantic Goals。总结起来如下图所示:
粒子滤波主要步骤如下:
(1)初始化阶段:
规定粒子数量,将粒子平均的分布在规划区域,规划区域需要人为或者通过特征算法计算得出,比如人脸追踪,初始化阶段需要人为标出图片中人脸范围或者使用人脸识别算法识别出人脸区域。对于SLAM来说,规划区域一般为用来进行定位的地图,在初始化时,将需要设置的特定数量粒子均匀的撒满整张地图。
(2)转移阶段:
这个阶段所做的任务就是对每个粒子根据状态转移方程进行状态估计,每个粒子将会产生一个与之相对应的预测粒子。这一步同卡尔曼滤波方法相同,只是卡尔曼是对一个状态进行状态估计,粒子滤波是对大量样本(每个粒子即是一个样本)进行状态估计。
(3)决策阶段:
决策阶段也称校正阶段。在这一阶段中,算法需要对预测粒子进行评价,越接近于真实状态的粒子,其权重越大,反之,与真实值相差较大的粒子,其权重越小。此步骤是为重采样做准备。在SLAM中权重计算方式有很多,比如机器人行走过程中,激光雷达或者深度摄像头会返回周围位置信息,如果这些信息与期望值相差较大,亦或者在运动中某些粒子本应该没有碰到障碍或者边界,然而在运算中却到达甚至穿过了障碍点或边界,那么这种粒子就是坏点粒子,这样的粒子权重也就比较低一些。
(4)重采样阶段:
根据粒子权重对粒子进行筛选,筛选过程中,既要大量保留权重大的粒子,又要有一小部分权重小的粒子;权重小的粒子有些会被淘汰,为了保证粒子总数不变,一般会在权值较高的粒子附近加入一些新的粒子。
(5)滤波:
将重采样后的粒子带入状态转移方程得到新的预测粒子,然后将它们继续进行上述转移、决策、重采样过程,经过这种循环迭代,最终绝大部分粒子会聚集在与真实值最接近的区域内,从而得到机器人准确的位置,实现定位。
(6)地图生成:
每个粒子都携带一个路径地图,整个过程下来,我们选取最优的粒子,即可获得规划区域的栅格地图。
2、导航基本原理
Navigation栈[是否为Navigation包]是一个获取里程计信息、传感器数据和目标位姿并输出安全的速度命令到运动平台的2D导航包的集合。
(1) 定位
机器人在导航的过程中需要时刻确定自身当前的位置,Navigation 栈中使用amcl包来定位。amcl是一种概率定位系统,以2D方式对移动机器人定位,它实现了自适应(或者KLD-采样)蒙特卡洛定位法,使用粒子滤波跟踪机器人在已知地图中的位姿。下面的图片显示用里程计和AMCL定位的不同之处,AMCL估计base结构(机器人)相当于global结构(世界地图)TF转换(ROS中的坐标系转换)。从本质上,这种转换利用航位推算来处理漂移,所发布的转换是远期的。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。