当前位置:   article > 正文

【Python原创毕设|课设】基于(Flask、机器学习、含报告)朴素贝叶斯的垃圾邮件分类算法与检测系统-文末附下载方式以及往届优秀论文,原创项目其他均为抄袭_利用python预测是否是垃圾邮件课程设计报告

利用python预测是否是垃圾邮件课程设计报告

基于(Flask、机器学习)朴素贝叶斯的垃圾邮件分类算法与检测系统(获取方式访问文末官网)

一、项目简介

随着信息时代的快速发展,电子邮件作为人们日常沟通的重要方式也变得日益普及。然而,随之而来的垃圾邮件问题不可避免地困扰着用户,对邮件通信质量造成负面影响。为了解决这一问题,我们开发了基于朴素贝叶斯算法和TF-IDF特征提取的邮件分类系统。

技术方面,我们借助Python编程语言和Sklearn、Flask、Echarts等库与框架,构建了这个功能强大的系统。朴素贝叶斯算法被选作核心分类算法,通过Sklearn库实现模型训练和分类,以提高系统的准确性。TF-IDF算法用于邮件特征提取,进一步优化了分类性能。

系统功能包括邮件检测与数据管理两大模块。邮件检测模块通过朴素贝叶斯算法和TF-IDF特征提取,对邮件进行准确分类,解决了垃圾邮件的问题。数据管理模块涵盖了数据存储、分析和可视化,通过Echarts库将检测日志内容以词云、分类饼状图和流量折线图的形式进行可视化展示,使用户能够直观了解邮件流量和分类情况。

这个系统的意义在于为用户提供了一个高效、智能的垃圾邮件分类解决方案。通过朴素贝叶斯算法,我们可以在海量的邮件中迅速准确地筛选出垃圾邮件,提升了邮件通信质量,释放了邮箱存储空间。同时,数据分析和可视化功能让用户能够更好地了解邮件流量和分类情况,为邮件管理提供了有力的支持。这样的系统符合现代社会信息化发展的趋势,对个人、企业和社会都具有积极的意义。

二、开发环境

开发环境版本/工具
PYTHON3.6.8
开发工具PyCharm
操作系统Windows 10
内存要求8GB 以上
浏览器Firefox (推荐)、Google Chrome (推荐)、Edge
数据库MySQL 8.0 (推荐)
数据库工具Navicat Premium 15 (推荐)
项目框架FLASK、Skite-learn

三、项目技术

Python: 作为开发语言,用于编写后端逻辑和数据处理。

Flask: Python的Web框架,用于搭建后端数据接口和处理HTTP请求。

PyMySQL: 用于Python与MySQL数据库的交互,实现数据的存储和读取。

Echarts: JavaScript的数据可视化库,用于将数据转化为图表形式展示给用户。

LAYUI: 轻量级前端UI框架,用于构建用户友好的交互界面。

JavaScript: 用于实现前端交互和处理用户输入。

HTML和CSS: 用于构建前端界面和样式设计。

scikit-learn、pandas和numpy: Python的数据处理和机器学习库,用于数据预测和分析。

AJAX: 用于实现前后端数据交互,异步请求后端数据接口。

MySQL: 数据库管理系统,用于持久化数据。

四、功能结构

  1. 系统功能结构图
    请添加图片描述

  2. 系统详细报告论文截图
    请添加图片描述

  3. 邮件检测与分类模块

    • 功能描述

      用户可以将邮件内容输入系统,系统基于朴素贝叶斯算法和TF-IDF特征提取进行邮件分类。将邮件分为垃圾邮件和正常邮件,以净化用户的邮箱。

    • 技术实现简介

      使用Sklearn库实现朴素贝叶斯算法模型的训练,将训练好的模型应用于用户输入的邮件内容,进行分类判别。TF-IDF算法用于对邮件内容进行特征提取,生成特征向量。

  4. 数据管理模块

    • 功能描述

      此模块负责存储和管理系统处理的邮件数据,包括垃圾邮件和正常邮件的分类结果,以及相关的检测日志。

    • 技术实现简介

      使用MySQL数据库进行数据存储,将邮件分类结果、检测日志等信息存储于数据库中。通过SQL语句实现对数据的存取、管理、查询等操作。

  5. 可视化分析模块

    • 功能描述

      提供对系统运行情况的数据分析和可视化展示,包括词云展示常见关键词、饼状图展示邮件分类比例、折线图展示检测流量趋势等。

    • 技术实现简介

      使用Echarts技术实现数据的可视化分析,根据数据从数据库中提取相应信息并以图表的形式展示。使用JavaScript对Echarts进行配置和调用,呈现给用户直观的数据分析结果。

这三个模块共同构成了整个系统的功能结构。邮件检测与分类模块解决了垃圾邮件分类问题,数据管理模块负责数据的存储和管理,可视化分析模块则通过图表直观展示数据分析结果,为用户提供全面的邮件管理解决方案。

五、运行截图

检测页面
请添加图片描述
检测结果
在这里插入图片描述

系统登录页面
在这里插入图片描述

后台管理首页面
在这里插入图片描述

日志管理模块页面
在这里插入图片描述

检测日志词云分析
请添加图片描述

检测日志分类分析
在这里插入图片描述
检测日志流量分析
在这里插入图片描述

六、功能实现

机器学习预测核心代码

# 绘制混淆矩阵
def plot_confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues):
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=0)
    plt.yticks(tick_marks, classes)

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')

def train():
    content_list, label_list = get_train_data()  # 获取训练数据
    stopword_list = get_stop_word()  # 获取停用词
    cutWords_list = split_words(content_list, stopword_list)  # 分词+停用词处理
    counts = calc_tf(cutWords_list)  # 统计词频
    tfidf_matrix = calc_idf(counts)  # 计算概率

    train_X, test_X, train_y, test_y = train_test_split(tfidf_matrix, label_list, test_size=0.2,
                                                        random_state=0)  # 分割数据集
    print("训练集:", train_X[0].shape)
    mnb = MultinomialNB()  # 创建模型
    startTime = time.time()
    mnb.fit(train_X, train_y)  # 训练过程
    print('贝叶斯分类器训练用时%.2f秒' % (time.time() - startTime))

    sc1 = mnb.score(test_X, test_y)  # 在测试集上计算得分
    print('准确率为:', sc1)

    y_pred1 = mnb.predict(test_X)
    joblib.dump(mnb, "./mnb.joblib")
    print('召回率为:', recall_score(test_y, y_pred1))
    plot_confusion_matrix(confusion_matrix(test_y, y_pred1), [0, 1])
    print(test_X[0])
    print(y_pred1[0])
    plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

创建数据库连接核心代码

def connect(self):
    self.conn = pymysql.connect(
      host=DB_CONFIG["host"],
      port=DB_CONFIG["port"],
      user=DB_CONFIG["user"],
      passwd=DB_CONFIG["passwd"],
      db=DB_CONFIG["db"],
      charset=DB_CONFIG["charset"],
      cursorclass=pymysql.cursors.DictCursor)
    self.cursor = self.conn.cursor()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

检测接口核心代码

import jieba
from machine_learning import predict as pt
from service.slog_service import insert_slog


# 简单统计模块
# 连续字母且不成单词
# 连续数字且不具备含义
# 连续标点符号
def isPunctuation(word):
    '''判断是否为特殊字符'''
    string = "《》?“”:{}+——!~@#¥%……&*()/*-,。‘’;】【、|·,.;'][`\!$^()_"
    if word in string:
        return True
    else:
        return False


def isChinese(word):
    '''判断是否为中文汉字'''
    for i in word:
        if word >= u'\u4e00' and word <= u'\u9fa5':
            continue
        else:
            return False
    return True


# 文本统计学分析
# number_minlen 字母串长度(最小长度,大于则统计)
# letter_minlen 字母串长度(最小长度,大于则统计)
# alnum_minlen 混合长度(最小长度,大于则统计)
def wordAnalysis(text, number_minlen, letter_minlen, alnum_minlen):
    words_arr = jieba.cut(text)
    word_num, words_num, punctuation_num, letter_num, number_num, alnum_num, chi_len, num_len, letter_len = 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001
    for word in words_arr:
        word_len = len(word)
        if isChinese(word):
            if word_len >= 2:
                words_num += 1
            else:
                word_num += 1
            chi_len += len(word)
        else:
            if isPunctuation(word):
                punctuation_num += 1
            elif word_len > letter_minlen and word.isalpha():
                letter_num += 1
                letter_len += word_len
            elif word_len > number_minlen and word.isdigit():
                number_num += 1
                num_len += word_len
            elif word_len > alnum_minlen and word.isalnum():
                alnum_num += 1
                for i in word:
                    if i.isalpha():
                        letter_len += 1
                    else:
                        num_len += 1
    return word_num, words_num, punctuation_num, letter_num, number_num, alnum_num, chi_len, num_len, letter_len


# 预测邮件
def predict(text):
    y = pt.predict([text])
    y = 1 if len(y) <= 0 else y[0]
    insert_slog({'content': text, 'result': y})
    return y

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69

七、源码获取

源码、安装教程文档、项目简介文档以及其它相关文档已经上传到是云猿实战官网,可以通过下面官网进行获取项目!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/157749
推荐阅读
相关标签
  

闽ICP备14008679号