当前位置:   article > 正文

大模型实战营课程笔记 ②

大模型实战营课程笔记 ②

Demo 练习

一、环境搭建

1、创建开发机

2、添加镜像

3、选择资源

4、创建完成后进入开发机

5、用bash命令,进入conda环境

6、用以下命令,克隆一个已有的pytorch 2.0.1的环境

conda create --name internlm-demo --clone=/root/share/conda_envs/internlm-base

7、激活环境

conda activate internlm-demo

8、在环境中安装运行demo所需的依赖

  1. # 升级pip
  2. python -m pip install --upgrade pip
  3. pip install modelscope==1.9.5
  4. pip install transformers==4.35.2
  5. pip install streamlit==1.24.0
  6. pip install sentencepiece=0.1.99
  7. pip install accelerate==0.24.1

二、模型下载

InternStudio平台的share目录已经准备了全系列的InternLM模型,可以直接复制

  1. mkdir -p /root/model/Shanghai_AI_Laboratory
  2. cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory

三、代码准备

在 /root 路径下新建 code 目录,然后切换路径,clone代码

  1. cd /root/code
  2. git clone http://gitee.com/internlm/InternLM.git

切换commit版本,与教程commit版本保持一致

  1. cd InternLM
  2. git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17

将 /root/code/InternLM/web_demo.py中29行和33行模型更换为本地的 /root/model/Shanghai_AI_Laboratory/internlm-chat-7b

用ctrl+s进行保存

四、终端运行

打开vscode, 在 /root/code/InternLM 目录下新建一个 cli_demo.py文件

填入以下代码

  1. import torch
  2. from transformers import AutoTokenizer, AutoModelForCausalLM
  3. model_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"
  4. tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
  5. model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
  6. model = model.eval()
  7. system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
  8. - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
  9. - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
  10. """
  11. messages = [(system_prompt, '')]
  12. print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
  13. while True:
  14. input_text = input("User >>> ")
  15. input_text = input_text.replace(' ', '')
  16. if input_text == "exit":
  17. break
  18. response, history = model.chat(tokenizer, input_text, history=messages)
  19. messages.append((input_text, response))
  20. print(f"robot >>> {response}")

 运行终端,切换internlm-demo环境。

  1. bash
  2. conda info -e
  3. conda activate internlm-demo

复制以下命令,运行

python /root/code/InternLM/cli_demo.py

 发现报错,ModuleNotFoundError: No module named ‘sentencepiece‘

说明在当前的 Python 环境中缺少名为 sentencepiece 的模块,导致 Python 找不到该模块。

sentencepiece 是一个 Python 第三方模块,用于自然语言处理(NLP)任务中的分词和词嵌入。要解决这个错误,需要安装 sentencepiece 模块。你可以通过以下命令使用 pip 安装 sentencepiece

pip install sentencepiece

 安装好后,重新运行“python /root/code/InternLM/cli_demo.py”即可。输入exit可退出终端。

 五、web demo运行

1、配置本地端口

打开本地power shell 终端,运行以下命令来生成 SSH 密钥对

ssh-keygen -t rsa

被提示选择密钥文件的保存位置,默认情况下是在 ~/.ssh/ 目录中。按 Enter 键接受默认值或输入自定义路径 。

公钥默认存储在 ~/.ssh/id_rsa.pub,可以通过系统自带的 cat 工具查看文件内容:(如下图所示)

cat ~\.ssh\id_rsa.pub

将公钥复制到剪贴板中,然后回到 InternStudio 控制台,点击配置 SSH Key。 (注意不能有中文)

 2、点击“开发机”下的“SSH链接”查看端口号 *****(五位数字)在本地终端输入以下命令,并更改新的端口号。注意3390换成自己端口号,最小化。

ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 33090 

3、运行web demo

切换到vscode界面,运行/root/code/InternLM目录下的web_demo.py文件,然后,按住ctrl+网址链接,就可以打开网页。

  1. bash
  2. conda activate internlm-demo # 首次进入 vscode 会默认是 base 环境,所以首先切换环境
  3. cd /root/code/InternLM
  4. streamlit run web_demo.py --server.address 127.0.0.1 --server.port 6006

打开链接后,模型才会加载,速度稍微有些慢。

六、Lagent智能体工具调用Demo

1、环境准备、模型下载(同上一、二,若已完成,不需要重新安装)

2、Lagent安装

切换路径到/root/code 克隆lagent仓库,切换commit ID,安装。

  1. cd /root/code
  2. git clone https://gitee.com/internlm/lagent.git
  3. cd /root/code/lagent
  4. git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
  5. pip install -e . # 源码安装

这个警告不用管,直接成功完成安装。注意:源码安装,那里最后有一个“.”。

3、修改目录

直接将以下内容替换进/root/code/lagent/examples/react_web_demo.py

  1. import copy
  2. import os
  3. import streamlit as st
  4. from streamlit.logger import get_logger
  5. from lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter
  6. from lagent.agents.react import ReAct
  7. from lagent.llms import GPTAPI
  8. from lagent.llms.huggingface import HFTransformerCasualLM
  9. class SessionState:
  10. def init_state(self):
  11. """Initialize session state variables."""
  12. st.session_state['assistant'] = []
  13. st.session_state['user'] = []
  14. #action_list = [PythonInterpreter(), GoogleSearch()]
  15. action_list = [PythonInterpreter()]
  16. st.session_state['plugin_map'] = {
  17. action.name: action
  18. for action in action_list
  19. }
  20. st.session_state['model_map'] = {}
  21. st.session_state['model_selected'] = None
  22. st.session_state['plugin_actions'] = set()
  23. def clear_state(self):
  24. """Clear the existing session state."""
  25. st.session_state['assistant'] = []
  26. st.session_state['user'] = []
  27. st.session_state['model_selected'] = None
  28. if 'chatbot' in st.session_state:
  29. st.session_state['chatbot']._session_history = []
  30. class StreamlitUI:
  31. def __init__(self, session_state: SessionState):
  32. self.init_streamlit()
  33. self.session_state = session_state
  34. def init_streamlit(self):
  35. """Initialize Streamlit's UI settings."""
  36. st.set_page_config(
  37. layout='wide',
  38. page_title='lagent-web',
  39. page_icon='./docs/imgs/lagent_icon.png')
  40. # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
  41. st.sidebar.title('模型控制')
  42. def setup_sidebar(self):
  43. """Setup the sidebar for model and plugin selection."""
  44. model_name = st.sidebar.selectbox(
  45. '模型选择:', options=['gpt-3.5-turbo','internlm'])
  46. if model_name != st.session_state['model_selected']:
  47. model = self.init_model(model_name)
  48. self.session_state.clear_state()
  49. st.session_state['model_selected'] = model_name
  50. if 'chatbot' in st.session_state:
  51. del st.session_state['chatbot']
  52. else:
  53. model = st.session_state['model_map'][model_name]
  54. plugin_name = st.sidebar.multiselect(
  55. '插件选择',
  56. options=list(st.session_state['plugin_map'].keys()),
  57. default=[list(st.session_state['plugin_map'].keys())[0]],
  58. )
  59. plugin_action = [
  60. st.session_state['plugin_map'][name] for name in plugin_name
  61. ]
  62. if 'chatbot' in st.session_state:
  63. st.session_state['chatbot']._action_executor = ActionExecutor(
  64. actions=plugin_action)
  65. if st.sidebar.button('清空对话', key='clear'):
  66. self.session_state.clear_state()
  67. uploaded_file = st.sidebar.file_uploader(
  68. '上传文件', type=['png', 'jpg', 'jpeg', 'mp4', 'mp3', 'wav'])
  69. return model_name, model, plugin_action, uploaded_file
  70. def init_model(self, option):
  71. """Initialize the model based on the selected option."""
  72. if option not in st.session_state['model_map']:
  73. if option.startswith('gpt'):
  74. st.session_state['model_map'][option] = GPTAPI(
  75. model_type=option)
  76. else:
  77. st.session_state['model_map'][option] = HFTransformerCasualLM(
  78. '/root/model/Shanghai_AI_Laboratory/internlm-chat-7b')
  79. return st.session_state['model_map'][option]
  80. def initialize_chatbot(self, model, plugin_action):
  81. """Initialize the chatbot with the given model and plugin actions."""
  82. return ReAct(
  83. llm=model, action_executor=ActionExecutor(actions=plugin_action))
  84. def render_user(self, prompt: str):
  85. with st.chat_message('user'):
  86. st.markdown(prompt)
  87. def render_assistant(self, agent_return):
  88. with st.chat_message('assistant'):
  89. for action in agent_return.actions:
  90. if (action):
  91. self.render_action(action)
  92. st.markdown(agent_return.response)
  93. def render_action(self, action):
  94. with st.expander(action.type, expanded=True):
  95. st.markdown(
  96. "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>插 件</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>" # noqa E501
  97. + action.type + '</span></p>',
  98. unsafe_allow_html=True)
  99. st.markdown(
  100. "<p style='text-align: left;display:flex;'> <span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'>思考步骤</span><span style='width:14px;text-align:left;display:block;'>:</span><span style='flex:1;'>" # noqa E501
  101. + action.thought + '</span></p>',
  102. unsafe_allow_html=True)
  103. if (isinstance(action.args, dict) and 'text' in action.args):
  104. st.markdown(
  105. "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行内容</span><span style='width:14px;text-align:left;display:block;'>:</span></p>", # noqa E501
  106. unsafe_allow_html=True)
  107. st.markdown(action.args['text'])
  108. self.render_action_results(action)
  109. def render_action_results(self, action):
  110. """Render the results of action, including text, images, videos, and
  111. audios."""
  112. if (isinstance(action.result, dict)):
  113. st.markdown(
  114. "<p style='text-align: left;display:flex;'><span style='font-size:14px;font-weight:600;width:70px;text-align-last: justify;'> 执行结果</span><span style='width:14px;text-align:left;display:block;'>:</span></p>", # noqa E501
  115. unsafe_allow_html=True)
  116. if 'text' in action.result:
  117. st.markdown(
  118. "<p style='text-align: left;'>" + action.result['text'] +
  119. '</p>',
  120. unsafe_allow_html=True)
  121. if 'image' in action.result:
  122. image_path = action.result['image']
  123. image_data = open(image_path, 'rb').read()
  124. st.image(image_data, caption='Generated Image')
  125. if 'video' in action.result:
  126. video_data = action.result['video']
  127. video_data = open(video_data, 'rb').read()
  128. st.video(video_data)
  129. if 'audio' in action.result:
  130. audio_data = action.result['audio']
  131. audio_data = open(audio_data, 'rb').read()
  132. st.audio(audio_data)
  133. def main():
  134. logger = get_logger(__name__)
  135. # Initialize Streamlit UI and setup sidebar
  136. if 'ui' not in st.session_state:
  137. session_state = SessionState()
  138. session_state.init_state()
  139. st.session_state['ui'] = StreamlitUI(session_state)
  140. else:
  141. st.set_page_config(
  142. layout='wide',
  143. page_title='lagent-web',
  144. page_icon='./docs/imgs/lagent_icon.png')
  145. # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
  146. model_name, model, plugin_action, uploaded_file = st.session_state[
  147. 'ui'].setup_sidebar()
  148. # Initialize chatbot if it is not already initialized
  149. # or if the model has changed
  150. if 'chatbot' not in st.session_state or model != st.session_state[
  151. 'chatbot']._llm:
  152. st.session_state['chatbot'] = st.session_state[
  153. 'ui'].initialize_chatbot(model, plugin_action)
  154. for prompt, agent_return in zip(st.session_state['user'],
  155. st.session_state['assistant']):
  156. st.session_state['ui'].render_user(prompt)
  157. st.session_state['ui'].render_assistant(agent_return)
  158. # User input form at the bottom (this part will be at the bottom)
  159. # with st.form(key='my_form', clear_on_submit=True):
  160. if user_input := st.chat_input(''):
  161. st.session_state['ui'].render_user(user_input)
  162. st.session_state['user'].append(user_input)
  163. # Add file uploader to sidebar
  164. if uploaded_file:
  165. file_bytes = uploaded_file.read()
  166. file_type = uploaded_file.type
  167. if 'image' in file_type:
  168. st.image(file_bytes, caption='Uploaded Image')
  169. elif 'video' in file_type:
  170. st.video(file_bytes, caption='Uploaded Video')
  171. elif 'audio' in file_type:
  172. st.audio(file_bytes, caption='Uploaded Audio')
  173. # Save the file to a temporary location and get the path
  174. file_path = os.path.join(root_dir, uploaded_file.name)
  175. with open(file_path, 'wb') as tmpfile:
  176. tmpfile.write(file_bytes)
  177. st.write(f'File saved at: {file_path}')
  178. user_input = '我上传了一个图像,路径为: {file_path}. {user_input}'.format(
  179. file_path=file_path, user_input=user_input)
  180. agent_return = st.session_state['chatbot'].chat(user_input)
  181. st.session_state['assistant'].append(copy.deepcopy(agent_return))
  182. logger.info(agent_return.inner_steps)
  183. st.session_state['ui'].render_assistant(agent_return)
  184. if __name__ == '__main__':
  185. root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
  186. root_dir = os.path.join(root_dir, 'tmp_dir')
  187. os.makedirs(root_dir, exist_ok=True)
  188. main()

4、连接SSH

打开本地power shell 终端。在本地终端输入以下命令,并更改新的端口号。注意3390换成自己端口号,最小化。

ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 33090

5、Demo运行

streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

按住ctrl打开浏览器连接。注意模型选择 InrernLM

关闭网页,然后回到vs code,按住ctrl+c 可以关掉Lagent智能体工具调用Demo。

6、查看GPU占用

vgpu-smi

七、浦语·灵笔图文理解创作Demo

1、新建一个新的开发机,配置为A100(1/4)*2。选择镜像和资源配置,如下图所示:

2、进入开发机,进入vs code。打开Terminal终端,“bash”进入conda环境,查看当前虚拟环境。

3、使用以下命令,从本地克隆一个已有的pytorch 2.0.1的环境

conda create --name xcomposer-demo --clone=/root/share/conda_envs/internlm-base

4、用一下命令切换环境

conda activate xcomposer-demo

5、用以下命令,安装transformers、gradio等依赖包

pip install transformers==4.33.1 timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops accelerate

(上面error和warning不用管)

6、模型下载

  1. mkdir -p /root/model/Shanghai_AI_Laboratory
  2. cp -r /root/share/temp/model_repos/internlm-xcomposer-7b /root/model/Shanghai_AI_Laboratory

7、代码准备

在/root/code git clone InternLM-XComposer仓库代码

  1. cd /root/code
  2. git clone https://gitee.com/internlm/InternLM-XComposer.git
  3. cd /root/code/InternLM-XComposer
  4. git checkout 3e8c79051a1356b9c388a6447867355c0634932d # 最好保证和教程的 commit 版本一致

8、demo 运行

在终端运行以下代码

  1. cd /root/code/InternLM-XComposer
  2. python examples/web_demo.py \
  3. --folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \
  4. --num_gpus 1 \
  5. --port 6006

9、配置本地端口(同上)

然后点住ctrl打开网址可以看见浦语的网页,但我这里好像有些问题……

这里是渲染问题,解决方法是在web_demo.py里修改代码

demo.launch(share=True, server_name="0.0.0.0", server_port=6006, root_path=f'/proxy/6006/')

右边可以直接换图片或者换文字。

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/161877
推荐阅读
相关标签
  

闽ICP备14008679号