赞
踩
elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容
例如:
在GitHub搜索代码
在电商网站搜索商品
在百度搜索答案
在打车软件搜索附近的车
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:
而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。
elasticsearch底层是基于lucene来实现的。
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:Apache Lucene - Welcome to Apache Lucene 。
elasticsearch的发展历史:
2004年Shay Banon基于Lucene开发了Compass
2010年Shay Banon 重写了Compass,取名为Elasticsearch。
目前比较知名的搜索引擎技术排名:
虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:
什么是elasticsearch?
一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能
什么是elastic stack(ELK)?
是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch
什么是Lucene?
是Apache的开源搜索引擎类库,提供了搜索引擎的核心API
倒排索引的概念是基于MySQL这样的正向索引而言的。
那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
倒排索引中有两个非常重要的概念:
文档(Document
):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
词条(Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
创建倒排索引是对正向索引的一种特殊处理,流程如下:
将每一个文档的数据利用算法分词,得到一个个词条
创建表,每行数据包括词条、词条所在文档id、位置等信息
因为词条唯一性,可以给词条创建索引,例如hash表结构索引
如图:
倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件"华为手机"
进行搜索。
2)对用户输入内容分词,得到词条:华为
、手机
。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。
如图:
虽然要先查询倒排索引,再查询正向索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。
那么为什么一个叫做正向索引,一个叫做倒排索引呢?
正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。
是不是恰好反过来了?
那么两者方式的优缺点是什么呢?
正向索引:
优点:
可以给多个字段创建索引
根据索引字段搜索、排序速度非常快
缺点:
根据非索引字段,或者字段中的部分词条查找时,只能全表扫描。
倒排索引:
优点:
根据词条搜索、模糊搜索时,速度非常快
缺点:
只能给词条创建索引,而不是字段
无法根据字段做排序
elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。
elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
而Json文档中往往包含很多的字段(Field),类似于数据库中的列。
索引(Index),就是相同类型的文档的集合。
例如:
所有用户文档,就可以组织在一起,称为用户的索引;
所有商品的文档,可以组织在一起,称为商品的索引;
所有订单的文档,可以组织在一起,称为订单的索引;
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
我们统一的把mysql与elasticsearch的概念做一下对比:
MySQL | Elasticsearch | 说明 |
---|---|---|
Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) |
Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 |
Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) |
Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) |
SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD |
是不是说,我们学习了elasticsearch就不再需要mysql了呢?
并不是如此,两者各自有自己的擅长支出:
Mysql:擅长事务类型操作,可以确保数据的安全和一致性
Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
对安全性要求较高的写操作,使用mysql实现
对查询性能要求较高的搜索需求,使用elasticsearch实现
两者再基于某种方式,实现数据的同步,保证一致性
因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:
docker network create es-net
这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。
课前资料提供了镜像的tar包:
大家将其上传到虚拟机中,然后运行命令加载即可:
- # 导入数据
- docker load -i es.tar
同理还有kibana
的tar包也需要这样做。
运行docker命令,部署单点es:
- docker run -d \
- --name es \
- -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
- -e "discovery.type=single-node" \
- -v es-data:/usr/share/elasticsearch/data \
- -v es-plugins:/usr/share/elasticsearch/plugins \
- --privileged \
- --network es-net \
- -p 9200:9200 \
- -p 9300:9300 \
- elasticsearch:7.12.1
命令解释:
-e "cluster.name=es-docker-cluster"
:设置集群名称
-e "http.host=0.0.0.0"
:监听的地址,可以外网访问
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m"
:
-e
参数用于设置环境变量。在您提供的命令中,-e "ES_JAVA_OPTS=-Xms512m -Xmx512m"
是设置Elasticsearch容器的一个环境变量。
具体来说,ES_JAVA_OPTS
是一个环境变量,用于配置Elasticsearch启动时使用的Java虚拟机(JVM)选项。在您提供的命令中,这个环境变量被设置为 -Xms512m -Xmx512m
。
-Xms512m
:这个选项设置了JVM的初始堆大小(即启动时分配的内存)为512兆字节(MB)。-Xmx512m
:这个选项设置了JVM的最大堆大小(即JVM可以使用的最大内存)为512兆字节(MB)。-e "discovery.type=single-node"
:非集群模式
-v es-data:/usr/share/elasticsearch/data
:挂载逻辑卷,绑定es的数据目录
-v es-logs:/usr/share/elasticsearch/logs
:挂载逻辑卷,绑定es的日志目录
-v es-plugins:/usr/share/elasticsearch/plugins
:挂载逻辑卷,绑定es的插件目录
--privileged
:授予逻辑卷访问权,它允许容器内的root用户拥有真正的root权限。这意味着容器内的进程可以访问宿主机的所有设备,并且可以执行一些通常需要更高权限的操作
--network es-net
:加入一个名为es-net的网络中
-p 9200:9200
:端口映射配置,http访问的入口
-p 9300:9300:tcp协议端口,用于集群模式下节点与节点之间的心跳检查的
在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:
kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。
运行docker命令,部署kibana
- docker run -d \
- --name kibana \
- -e ELASTICSEARCH_HOSTS=http://es:9200 \
- --network=es-net \
- -p 5601:5601 \
- kibana:7.12.1
--network es-net
:加入一个名为es-net的网络中,与elasticsearch在同一个网络中
-e ELASTICSEARCH_HOSTS=http://es:9200"
:设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
-p 5601:5601
:端口映射配置
kibana启动一般比较慢,需要多等待一会,可以通过命令:
docker logs -f kibana
查看运行日志,当查看到下面的日志,说明成功:
此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果
kibana中提供了一个DevTools界面:
这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。
DSL就是elasticsearch提供的特殊语法,基本格式如下:
[请求方式] /[请求路径]
{
[请求参数key1]: [请求参数value1],
[请求参数key2]: [请求参数value2]
}
例如:
- GET _analyze
- {
- "analyzer": "standard",
- "text": "黑马程序员"
- }
- GET _analyze: 这是一个HTTP GET请求,目标是Elasticsearch的
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。