当前位置:   article > 正文

STM32CubeIDE开发(三十三), stm32人工智能开发应用实践(Cube.AI).篇三_在cube-ai上模拟部署一遍,判断自己准备购买的板子适不适合做ai计算

在cube-ai上模拟部署一遍,判断自己准备购买的板子适不适合做ai计算

目录

一、cube.AI实际项目应用

二、创建工程

2.1 工程配置

2.2 外设代码设计

2.3 传感器数据采集与输出源码设计

2.4 编辑下载程序,采集数据

 三、模型训练

四、cube.AI配置及c模型生成

五、模型调用及测试


一、cube.AI实际项目应用

        接篇二,前文都是采用FP-AI-SENSING1案例和配套的B-L475E-IOT01A开发板来阐述的,而实际项目中,我们都是基于自身项目硬件平台来训练模型及部署模型的,我们仅仅需要cube.AI软件包(作为可调用库)来支持我们项目,不会强行采用FP-AI-SENSING1案例去收集数据及配套的B-L475E-IOT01A等硬件平台部署。

        回顾篇一,ST公司支持到如下图芯片型号,

         在本文中,将采用STM32L496VGT6-ali开发板来部署cube.AI实现人工智能。STM32L496VGT6开发板已经集成了LSM6DSL传感器(三轴加速度计及三轴陀螺仪传感器),项目设想如下:

        1)通过LSM6DSL采集加速度数值(x/y/z三轴加速度)

        2)本文只采集三种姿态(开发板正面朝上,静止不动、左右移动、上下移动三种姿态)时的加速度数值,用来实现分类神经网络,三种姿态作为神经网络模型输出值(分类)

        3)每次输入读取三组加速度值(每组数据是读取x/y/z三轴的三个加速度值),共9个数值作为神经网络模型输入数据

        4)利用STM32L496VGT6开发板上的三个按钮,KEY0为静止不动姿态采集按键,KEY1为左右移动姿态采集按键,KEY2为上下移动姿态采集按键。

        5)通过串口打印输出采集数据信息,并通过串联助手连接获得采集日志并保存成TXT文件

        6)将记录数据文件转换为csv文件,通过keras框架,编写神经网络训练模型python项目,进行神经网络模型训练,并输出.h5训练模型文件

        7)通过cubeMX和cube.AI将h5神经网络模型转换为c语言神经网络模型

        8)将LSM6DSL实时采集数据推送给c语言神经网络模型API,进行神经网络计算,查看输出结果是否符合预期。

二、创建工程

        在CubeIDE上,基于STM32L496VGT6芯片,创建新工程STM32工程,并实现了串口lpuart1调试日志输出,三个按键KEY0~2和三个LED灯LED0~2的功能实现,并实现LSM6DSL传感器采集数据功能(I2C4),请参考本专栏博文:

        1)cubeIDE快速开发流程_ide 程序的开发过程_py_free的博客-CSDN博客

        2)cubeIDE开发, stm32调试信息串口通信输出显示_py_free的博客-CSDN博客_怎么实查看stm32串口输出

        3)cubeIDE开发,I2C协议采集传感器数据(SHTC1、LTR-553ALS、BMP280、LSM6DSL、MMC3680KJ)_ltr553 driver download_py_free的博客-CSDN博客

        现给出简要的配置及源码信息:

2.1 工程配置

        1)内核功能配置及RCC开启外部时钟支持

         2)开启LPUART1,并开启其中断支持

         3)开启I2C4,并开启其中断功能及DMA功能

        4)配置GPIO引脚(三个按键及三个LED灯)

         5)配置时钟树

         6)引脚视图

         7)工程配置,选择为每个外设生成独立的.h/.c文件

         生成输出代码

2.2 外设代码设计

        禁用syscalls.c文件(右键进入文件属性设置页面)

        在工程下,创建源目录ICore,在该目录下,如下图所示,创建子目录及外设驱动源文件

         源码文件内容如下:

        1)key.h

  1. #ifndef KEY_H_
  2. #define KEY_H_
  3. #include "main.h"
  4. #include "gpio.h"
  5. GPIO_PinState get_key0_val();
  6. GPIO_PinState get_key1_val();
  7. GPIO_PinState get_key2_val();
  8. uint8_t KEY_0(void);
  9. uint8_t KEY_1(void);
  10. uint8_t KEY_2(void);
  11. #endif /* KEY_H_ */

         key.c

  1. #include "key.h"
  2. GPIO_PinState get_key0_val()
  3. {
  4. return HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin);
  5. };
  6. GPIO_PinState get_key1_val()
  7. {
  8. return HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin);
  9. };
  10. GPIO_PinState get_key2_val()
  11. {
  12. return HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin);
  13. };
  14. uint8_t KEY_0(void)
  15. {
  16. uint8_t a;
  17. a=0;//如果未进入按键处理,则返回0
  18. if(HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin)==GPIO_PIN_RESET){//读按键接口的电平
  19. HAL_Delay(20);//延时去抖动
  20. if(HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin)==GPIO_PIN_RESET){ //读按键接口的电平
  21. a=1;//进入按键处理,返回1
  22. }
  23. }
  24. while(HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin)==GPIO_PIN_RESET); //等待按键松开
  25. return a;
  26. }
  27. uint8_t KEY_1(void)
  28. {
  29. uint8_t a;
  30. a=0;//如果未进入按键处理,则返回0
  31. if(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==GPIO_PIN_RESET){//读按键接口的电平
  32. HAL_Delay(20);//延时去抖动
  33. if(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==GPIO_PIN_RESET){ //读按键接口的电平
  34. a=1;//进入按键处理,返回1
  35. }
  36. }
  37. while(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==GPIO_PIN_RESET); //等待按键松开
  38. return a;
  39. }
  40. uint8_t KEY_2(void)
  41. {
  42. uint8_t a;
  43. a=0;//如果未进入按键处理,则返回0
  44. if(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==GPIO_PIN_RESET){//读按键接口的电平
  45. HAL_Delay(20);//延时去抖动
  46. if(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==GPIO_PIN_RESET){ //读按键接口的电平
  47. a=1;//进入按键处理,返回1
  48. }
  49. }
  50. while(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==GPIO_PIN_RESET); //等待按键松开
  51. return a;
  52. }

         2) led.h

  1. #ifndef LED_H_
  2. #define LED_H_
  3. #include "main.h"
  4. #include "gpio.h"
  5. void Toggle_led0();
  6. void Toggle_led1();
  7. void Toggle_led2();
  8. void set_led0_val(GPIO_PinState PinState);
  9. void set_led1_val(GPIO_PinState PinState);
  10. void set_led2_val(GPIO_PinState PinState);
  11. #endif /* LED_H_ */

         led.c

  1. #include "led.h"
  2. void Toggle_led0()
  3. {
  4. HAL_GPIO_TogglePin(LED0_GPIO_Port,LED0_Pin);
  5. }
  6. void Toggle_led1()
  7. {
  8. HAL_GPIO_TogglePin(LED1_GPIO_Port,LED1_Pin);
  9. }
  10. void Toggle_led2()
  11. {
  12. HAL_GPIO_TogglePin(LED2_GPIO_Port,LED2_Pin);
  13. }
  14. void set_led0_val(GPIO_PinState PinState)
  15. {
  16. HAL_GPIO_WritePin(LED0_GPIO_Port,LED0_Pin,PinState);
  17. };
  18. void set_led1_val(GPIO_PinState PinState)
  19. {
  20. HAL_GPIO_WritePin(LED1_GPIO_Port,LED1_Pin,PinState);
  21. };
  22. void set_led2_val(GPIO_PinState PinState)
  23. {
  24. HAL_GPIO_WritePin(LED2_GPIO_Port,LED2_Pin,PinState);
  25. };

         3)print.h

  1. #ifndef INC_RETARGET_H_
  2. #define INC_RETARGET_H_
  3. #include "stm32l4xx_hal.h"
  4. #include "stdio.h"//用于printf函数串口重映射
  5. #include <sys/stat.h>
  6. void ResetPrintInit(UART_HandleTypeDef *huart);
  7. int _isatty(int fd);
  8. int _write(int fd, char* ptr, int len);
  9. int _close(int fd);
  10. int _lseek(int fd, int ptr, int dir);
  11. int _read(int fd, char* ptr, int len);
  12. int _fstat(int fd, struct stat* st);
  13. #endif /* INC_RETARGET_H_ */

         print.c

  1. #include <_ansi.h>
  2. #include <_syslist.h>
  3. #include <errno.h>
  4. #include <sys/time.h>
  5. #include <sys/times.h>
  6. #include <limits.h>
  7. #include <signal.h>
  8. #include <stdint.h>
  9. #include <stdio.h>
  10. #include "print.h"
  11. #if !defined(OS_USE_SEMIHOSTING)
  12. #define STDIN_FILENO 0
  13. #define STDOUT_FILENO 1
  14. #define STDERR_FILENO 2
  15. UART_HandleTypeDef *gHuart;
  16. void ResetPrintInit(UART_HandleTypeDef *huart) {
  17. gHuart = huart;
  18. /* Disable I/O buffering for STDOUT stream, so that
  19. * chars are sent out as soon as they are printed. */
  20. setvbuf(stdout, NULL, _IONBF, 0);
  21. }
  22. int _isatty(int fd) {
  23. if (fd >= STDIN_FILENO && fd <= STDERR_FILENO)
  24. return 1;
  25. errno = EBADF;
  26. return 0;
  27. }
  28. int _write(int fd, char* ptr, int len) {
  29. HAL_StatusTypeDef hstatus;
  30. if (fd == STDOUT_FILENO || fd == STDERR_FILENO) {
  31. hstatus = HAL_UART_Transmit(gHuart, (uint8_t *) ptr, len, HAL_MAX_DELAY);
  32. if (hstatus == HAL_OK)
  33. return len;
  34. else
  35. return EIO;
  36. }
  37. errno = EBADF;
  38. return -1;
  39. }
  40. int _close(int fd) {
  41. if (fd >= STDIN_FILENO && fd <= STDERR_FILENO)
  42. return 0;
  43. errno = EBADF;
  44. return -1;
  45. }
  46. int _lseek(int fd, int ptr, int dir) {
  47. (void) fd;
  48. (void) ptr;
  49. (void) dir;
  50. errno = EBADF;
  51. return -1;
  52. }
  53. int _read(int fd, char* ptr, int len) {
  54. HAL_StatusTypeDef hstatus;
  55. if (fd == STDIN_FILENO) {
  56. hstatus = HAL_UART_Receive(gHuart, (uint8_t *) ptr, 1, HAL_MAX_DELAY);
  57. if (hstatus == HAL_OK)
  58. return 1;
  59. else
  60. return EIO;
  61. }
  62. errno = EBADF;
  63. return -1;
  64. }
  65. int _fstat(int fd, struct stat* st) {
  66. if (fd >= STDIN_FILENO && fd <= STDERR_FILENO) {
  67. st->st_mode = S_IFCHR;
  68. return 0;
  69. }
  70. errno = EBADF;
  71. return 0;
  72. }
  73. #endif //#if !defined(OS_USE_SEMIHOSTING)

        4) usart.h

  1. #ifndef INC_USART_H_
  2. #define INC_USART_H_
  3. #include "stm32l4xx_hal.h" //HAL库文件声明
  4. #include <string.h>//用于字符串处理的库
  5. #include "../print/print.h"//用于printf函数串口重映射
  6. extern UART_HandleTypeDef hlpuart1;//声明LPUSART的HAL库结构体
  7. #define HLPUSART_REC_LEN 256//定义LPUSART最大接收字节数
  8. extern uint8_t HLPUSART_RX_BUF[HLPUSART_REC_LEN];//接收缓冲,最大HLPUSART_REC_LEN个字节.末字节为换行符
  9. extern uint16_t HLPUSART_RX_STA;//接收状态标记
  10. extern uint8_t HLPUSART_NewData;//当前串口中断接收的1个字节数据的缓存
  11. void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);//串口中断回调函数声明
  12. #endif /* INC_USART_H_ */

        usart.c

  1. #include "usart.h"
  2. uint8_t HLPUSART_RX_BUF[HLPUSART_REC_LEN];//接收缓冲,最大HLPUSART_REC_LEN个字节.末字节为换行符
  3. /*
  4. * bit15:接收到回车(0x0d)时设置HLPUSART_RX_STA|=0x8000;
  5. * bit14:接收溢出标志,数据超出缓存长度时,设置HLPUSART_RX_STA|=0x4000;
  6. * bit13:预留
  7. * bit12:预留
  8. * bit11~0:接收到的有效字节数目(0~4095)
  9. */
  10. uint16_t HLPUSART_RX_STA=0;接收状态标记//bit15:接收完成标志,bit14:接收到回车(0x0d),bit13~0:接收到的有效字节数目
  11. uint8_t HLPUSART_NewData;//当前串口中断接收的1个字节数据的缓存
  12. void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)//串口中断回调函数
  13. {
  14. if(huart ==&hlpuart1)//判断中断来源(串口1:USB转串口)
  15. {
  16. if(HLPUSART_NewData==0x0d){//回车标记
  17. HLPUSART_RX_STA|=0x8000;//标记接到回车
  18. }else{
  19. if((HLPUSART_RX_STA&0X0FFF)<HLPUSART_REC_LEN){
  20. HLPUSART_RX_BUF[HLPUSART_RX_STA&0X0FFF]=HLPUSART_NewData; //将收到的数据放入数组
  21. HLPUSART_RX_STA++; //数据长度计数加1
  22. }else{
  23. HLPUSART_RX_STA|=0x4000;//数据超出缓存长度,标记溢出
  24. }
  25. }
  26. HAL_UART_Receive_IT(&hlpuart1,(uint8_t *)&HLPUSART_NewData,1); //再开启接收中断
  27. }
  28. }

        5) LSM6DSL.h

  1. #ifndef _LSM6DSL_H_
  2. #define _LSM6DSL_H_
  3. #include "main.h"
  4. void LSM6DSL_init();
  5. //
  6. uint8_t LSM6DSL_acc_st_open(void);
  7. uint8_t LSM6DSL_acc_st_close(void);
  8. uint8_t LSM6DSL_gyro_st_open(void);
  9. uint8_t LSM6DSL_gyro_st_close(void);
  10. uint8_t LSM6DSL_acc_read(int32_t *x_data,int32_t *y_data,int32_t *z_data);
  11. uint8_t LSM6DSL_gyro_read(int32_t *x_data,int32_t *y_data,int32_t *z_data);
  12. #endif /* LSM6DSL_LSM6DSL_H_ */

        LSM6DSL.c,实现传感器的ID检验、软重置、模式设置、数据读取及转换功能。

  1. #include <stdio.h>
  2. #include "LSM6DSL.h"
  3. extern I2C_HandleTypeDef hi2c4;
  4. #define LSM6DSL_I2C_ADDR1 (0x6A)
  5. #define LSM6DSL_I2C_ADDR2 (0x6B)
  6. #define LSM6DSL_I2C_ADDR_TRANS(n) ((n) << 1)
  7. #define LSM6DSL_I2C_ADDR LSM6DSL_I2C_ADDR_TRANS(LSM6DSL_I2C_ADDR2)
  8. #define LSM6DSL_ACC_GYRO_FUNC_CFG_ACCESS 0x01
  9. #define LSM6DSL_ACC_GYRO_SENSOR_SYNC_TIME 0x04
  10. #define LSM6DSL_ACC_GYRO_SENSOR_RES_RATIO 0x05
  11. #define LSM6DSL_ACC_GYRO_FIFO_CTRL1 0x06
  12. #define LSM6DSL_ACC_GYRO_FIFO_CTRL2 0x07
  13. #define LSM6DSL_ACC_GYRO_FIFO_CTRL3 0x08
  14. #define LSM6DSL_ACC_GYRO_FIFO_CTRL4 0x09
  15. #define LSM6DSL_ACC_GYRO_FIFO_CTRL5 0x0A
  16. #define LSM6DSL_ACC_GYRO_DRDY_PULSE_CFG_G 0x0B
  17. #define LSM6DSL_ACC_GYRO_INT1_CTRL 0x0D
  18. #define LSM6DSL_ACC_GYRO_INT2_CTRL 0x0E
  19. #define LSM6DSL_ACC_GYRO_WHO_AM_I_REG 0x0F
  20. #define LSM6DSL_ACC_GYRO_CTRL1_XL 0x10
  21. #define LSM6DSL_ACC_GYRO_CTRL2_G 0x11
  22. #define LSM6DSL_ACC_GYRO_CTRL3_C 0x12
  23. #define LSM6DSL_ACC_GYRO_CTRL4_C 0x13
  24. #define LSM6DSL_ACC_GYRO_CTRL5_C 0x14
  25. #define LSM6DSL_ACC_GYRO_CTRL6_C 0x15
  26. #define LSM6DSL_ACC_GYRO_CTRL7_G 0x16
  27. #define LSM6DSL_ACC_GYRO_CTRL8_XL 0x17
  28. #define LSM6DSL_ACC_GYRO_CTRL9_XL 0x18
  29. #define LSM6DSL_ACC_GYRO_CTRL10_C 0x19
  30. #define LSM6DSL_ACC_GYRO_MASTER_CONFIG 0x1A
  31. #define LSM6DSL_ACC_GYRO_WAKE_UP_SRC 0x1B
  32. #define LSM6DSL_ACC_GYRO_TAP_SRC 0x1C
  33. #define LSM6DSL_ACC_GYRO_D6D_SRC 0x1D
  34. #define LSM6DSL_ACC_GYRO_STATUS_REG 0x1E
  35. #define LSM6DSL_ACC_GYRO_OUT_TEMP_L 0x20
  36. #define LSM6DSL_ACC_GYRO_OUT_TEMP_H 0x21
  37. #define LSM6DSL_ACC_GYRO_OUTX_L_G 0x22
  38. #define LSM6DSL_ACC_GYRO_OUTX_H_G 0x23
  39. #define LSM6DSL_ACC_GYRO_OUTY_L_G 0x24
  40. #define LSM6DSL_ACC_GYRO_OUTY_H_G 0x25
  41. #define LSM6DSL_ACC_GYRO_OUTZ_L_G 0x26
  42. #define LSM6DSL_ACC_GYRO_OUTZ_H_G 0x27
  43. #define LSM6DSL_ACC_GYRO_OUTX_L_XL 0x28
  44. #define LSM6DSL_ACC_GYRO_OUTX_H_XL 0x29
  45. #define LSM6DSL_ACC_GYRO_OUTY_L_XL 0x2A
  46. #define LSM6DSL_ACC_GYRO_OUTY_H_XL 0x2B
  47. #define LSM6DSL_ACC_GYRO_OUTZ_L_XL 0x2C
  48. #define LSM6DSL_ACC_GYRO_OUTZ_H_XL 0x2D
  49. #define LSM6DSL_ACC_GYRO_SENSORHUB1_REG 0x2E
  50. #define LSM6DSL_ACC_GYRO_SENSORHUB2_REG 0x2F
  51. #define LSM6DSL_ACC_GYRO_SENSORHUB3_REG 0x30
  52. #define LSM6DSL_ACC_GYRO_SENSORHUB4_REG 0x31
  53. #define LSM6DSL_ACC_GYRO_SENSORHUB5_REG 0x32
  54. #define LSM6DSL_ACC_GYRO_SENSORHUB6_REG 0x33
  55. #define LSM6DSL_ACC_GYRO_SENSORHUB7_REG 0x34
  56. #define LSM6DSL_ACC_GYRO_SENSORHUB8_REG 0x35
  57. #define LSM6DSL_ACC_GYRO_SENSORHUB9_REG 0x36
  58. #define LSM6DSL_ACC_GYRO_SENSORHUB10_REG 0x37
  59. #define LSM6DSL_ACC_GYRO_SENSORHUB11_REG 0x38
  60. #define LSM6DSL_ACC_GYRO_SENSORHUB12_REG 0x39
  61. #define LSM6DSL_ACC_GYRO_FIFO_STATUS1 0x3A
  62. #define LSM6DSL_ACC_GYRO_FIFO_STATUS2 0x3B
  63. #define LSM6DSL_ACC_GYRO_FIFO_STATUS3 0x3C
  64. #define LSM6DSL_ACC_GYRO_FIFO_STATUS4 0x3D
  65. #define LSM6DSL_ACC_GYRO_FIFO_DATA_OUT_L 0x3E
  66. #define LSM6DSL_ACC_GYRO_FIFO_DATA_OUT_H 0x3F
  67. #define LSM6DSL_ACC_GYRO_TIMESTAMP0_REG 0x40
  68. #define LSM6DSL_ACC_GYRO_TIMESTAMP1_REG 0x41
  69. #define LSM6DSL_ACC_GYRO_TIMESTAMP2_REG 0x42
  70. #define LSM6DSL_ACC_GYRO_TIMESTAMP_L 0x49
  71. #define LSM6DSL_ACC_GYRO_TIMESTAMP_H 0x4A
  72. #define LSM6DSL_ACC_GYRO_STEP_COUNTER_L 0x4B
  73. #define LSM6DSL_ACC_GYRO_STEP_COUNTER_H 0x4C
  74. #define LSM6DSL_ACC_GYRO_SENSORHUB13_REG 0x4D
  75. #define LSM6DSL_ACC_GYRO_SENSORHUB14_REG 0x4E
  76. #define LSM6DSL_ACC_GYRO_SENSORHUB15_REG 0x4F
  77. #define LSM6DSL_ACC_GYRO_SENSORHUB16_REG 0x50
  78. #define LSM6DSL_ACC_GYRO_SENSORHUB17_REG 0x51
  79. #define LSM6DSL_ACC_GYRO_SENSORHUB18_REG 0x52
  80. #define LSM6DSL_ACC_GYRO_FUNC_SRC 0x53
  81. #define LSM6DSL_ACC_GYRO_TAP_CFG1 0x58
  82. #define LSM6DSL_ACC_GYRO_TAP_THS_6D 0x59
  83. #define LSM6DSL_ACC_GYRO_INT_DUR2 0x5A
  84. #define LSM6DSL_ACC_GYRO_WAKE_UP_THS 0x5B
  85. #define LSM6DSL_ACC_GYRO_WAKE_UP_DUR 0x5C
  86. #define LSM6DSL_ACC_GYRO_FREE_FALL 0x5D
  87. #define LSM6DSL_ACC_GYRO_MD1_CFG 0x5E
  88. #define LSM6DSL_ACC_GYRO_MD2_CFG 0x5F
  89. #define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_X_L 0x66
  90. #define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_X_H 0x67
  91. #define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Y_L 0x68
  92. #define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Y_H 0x69
  93. #define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Z_L 0x6A
  94. #define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Z_H 0x6B
  95. #define LSM6DSL_ACC_GYRO_X_OFS_USR 0x73
  96. #define LSM6DSL_ACC_GYRO_Y_OFS_USR 0x74
  97. #define LSM6DSL_ACC_GYRO_Z_OFS_USR 0x75
  98. #define LSM6DSL_CHIP_ID_VALUE (0x6A)
  99. #define LSM6DSL_RESET_VALUE (0x1)
  100. #define LSM6DSL_RESET_MSK (0X1)
  101. #define LSM6DSL_RESET_POS (0)
  102. #define LSM6DSL_ACC_ODR_POWER_DOWN (0X00)
  103. #define LSM6DSL_ACC_ODR_1_6_HZ (0X0B)
  104. #define LSM6DSL_ACC_ODR_12_5_HZ (0x01)
  105. #define LSM6DSL_ACC_ODR_26_HZ (0x02)
  106. #define LSM6DSL_ACC_ODR_52_HZ (0x03)
  107. #define LSM6DSL_ACC_ODR_104_HZ (0x04)
  108. #define LSM6DSL_ACC_ODR_208_HZ (0x05)
  109. #define LSM6DSL_ACC_ODR_416_HZ (0x06)
  110. #define LSM6DSL_ACC_ODR_833_HZ (0x07)
  111. #define LSM6DSL_ACC_ODR_1_66_KHZ (0x08)
  112. #define LSM6DSL_ACC_ODR_3_33_KHZ (0x09)
  113. #define LSM6DSL_ACC_ODR_6_66_KHZ (0x0A)
  114. #define LSM6DSL_ACC_ODR_MSK (0XF0)
  115. #define LSM6DSL_ACC_ODR_POS (4)
  116. #define LSM6DSL_GYRO_ODR_POWER_DOWN (0X00)
  117. #define LSM6DSL_GYRO_ODR_12_5_HZ (0x01)
  118. #define LSM6DSL_GYRO_ODR_26_HZ (0x02)
  119. #define LSM6DSL_GYRO_ODR_52_HZ (0x03)
  120. #define LSM6DSL_GYRO_ODR_104_HZ (0x04)
  121. #define LSM6DSL_GYRO_ODR_208_HZ (0x05)
  122. #define LSM6DSL_GYRO_ODR_416_HZ (0x06)
  123. #define LSM6DSL_GYRO_ODR_833_HZ (0x07)
  124. #define LSM6DSL_GYRO_ODR_1_66_KHZ (0x08)
  125. #define LSM6DSL_GYRO_ODR_3_33_KHZ (0x09)
  126. #define LSM6DSL_GYRO_ODR_6_66_KHZ (0x0A)
  127. #define LSM6DSL_GYRO_ODR_MSK (0XF0)
  128. #define LSM6DSL_GYRO_ODR_POS (4)
  129. #define LSM6DSL_ACC_RANGE_2G (0x0)
  130. #define LSM6DSL_ACC_RANGE_4G (0x2)
  131. #define LSM6DSL_ACC_RANGE_8G (0x3)
  132. #define LSM6DSL_ACC_RANGE_16G (0x1)
  133. #define LSM6DSL_ACC_RANGE_MSK (0X0C)
  134. #define LSM6DSL_ACC_RANGE_POS (2)
  135. #define LSM6DSL_ACC_SENSITIVITY_2G (61)
  136. #define LSM6DSL_ACC_SENSITIVITY_4G (122)
  137. #define LSM6DSL_ACC_SENSITIVITY_8G (244)
  138. #define LSM6DSL_ACC_SENSITIVITY_16G (488)
  139. #define LSM6DSL_GYRO_RANGE_245 (0x0)
  140. #define LSM6DSL_GYRO_RANGE_500 (0x1)
  141. #define LSM6DSL_GYRO_RANGE_1000 (0x2)
  142. #define LSM6DSL_GYRO_RANGE_2000 (0x3)
  143. #define LSM6DSL_GYRO_RANGE_MSK (0X0C)
  144. #define LSM6DSL_GYRO_RANGE_POS (2)
  145. #define LSM6DSL_GYRO_SENSITIVITY_245DPS (8750)
  146. #define LSM6DSL_GYRO_SENSITIVITY_500DPS (17500)
  147. #define LSM6DSL_GYRO_SENSITIVITY_1000DPS (35000)
  148. #define LSM6DSL_GYRO_SENSITIVITY_2000DPS (70000)
  149. #define LSM6DSL_SHIFT_EIGHT_BITS (8)
  150. #define LSM6DSL_16_BIT_SHIFT (0xFF)
  151. #define LSM6DSL_ACC_MUL (1000)
  152. #define LSM6DSL_GYRO_MUL (1)
  153. #define LSM6DSL_ACC_DEFAULT_ODR_100HZ (100)
  154. #define LSM6DSL_GYRO_DEFAULT_ODR_100HZ (100)
  155. #define LSM6DSL_GET_BITSLICE(regvar, bitname) \
  156. ((regvar & bitname##_MSK) >> bitname##_POS)
  157. #define LSM6DSL_SET_BITSLICE(regvar, bitname, val) \
  158. ((regvar & ~bitname##_MSK) | ((val << bitname##_POS) & bitname##_MSK))
  159. typedef enum {
  160. ACC_RANGE_2G,
  161. ACC_RANGE_4G,
  162. ACC_RANGE_8G,
  163. ACC_RANGE_16G,
  164. ACC_RANGE_6G,
  165. ACC_RANGE_12G,
  166. ACC_RANGE_24G,
  167. ACC_RANGE_100G,
  168. ACC_RANGE_200G,
  169. ACC_RANGE_400G,
  170. ACC_RANGE_MAX
  171. } acc_range_e;
  172. typedef enum {
  173. GYRO_RANGE_125DPS,
  174. GYRO_RANGE_250DPS,
  175. GYRO_RANGE_500DPS,
  176. GYRO_RANGE_1000DPS,
  177. GYRO_RANGE_2000DPS,
  178. GYRO_RANGE_MAX
  179. } gyro_range_e;
  180. static int32_t lsm6dsl_acc_factor[ACC_RANGE_MAX] = {
  181. LSM6DSL_ACC_SENSITIVITY_2G, LSM6DSL_ACC_SENSITIVITY_4G,
  182. LSM6DSL_ACC_SENSITIVITY_8G, LSM6DSL_ACC_SENSITIVITY_16G
  183. };
  184. static int32_t lsm6dsl_gyro_factor[GYRO_RANGE_MAX] = {
  185. 0, LSM6DSL_GYRO_SENSITIVITY_245DPS, LSM6DSL_GYRO_SENSITIVITY_500DPS,
  186. LSM6DSL_GYRO_SENSITIVITY_1000DPS, LSM6DSL_GYRO_SENSITIVITY_2000DPS
  187. };
  188. typedef enum {
  189. DEV_POWER_OFF = 0,
  190. DEV_POWER_ON,
  191. DEV_SLEEP,
  192. DEV_SUSPEND,
  193. DEV_DEEP_SUSPEND,
  194. } LSM6DSL_power_mode;
  195. static int32_t cur_acc_factor = 0;
  196. static int32_t cur_gyro_factor = 0;
  197. uint8_t LSM6DSL_ID_check()
  198. {
  199. HAL_StatusTypeDef hi2c2_status = 0x00;
  200. uint8_t addr_val[3] = {LSM6DSL_ACC_GYRO_WHO_AM_I_REG,0x00,LSM6DSL_CHIP_ID_VALUE};
  201. hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  202. if(HAL_OK!=hi2c2_status){
  203. printf("get LSM6DSL ID error\r\n");
  204. return 1;
  205. }
  206. if(addr_val[1]!=addr_val[2]){
  207. printf("LSM6DSL validate_id is error\r\n");
  208. return 1;
  209. }
  210. printf("LSM6DSL_id:%02X\r\n",addr_val[1]);
  211. return 0;
  212. }
  213. uint8_t LSM6DSL_soft_reset()
  214. {
  215. HAL_StatusTypeDef hi2c2_status = 0x00;
  216. /*first read*/
  217. uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL3_C,0x00};
  218. hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  219. if(HAL_OK!=hi2c2_status){
  220. printf("get LSM6DSL ACC_GYRO_CTRL3_C error\r\n");
  221. return 1;
  222. }
  223. printf("LSM6DSL ACC_GYRO_CTRL3_C old:%02X\r\n",addr_val[1]);
  224. addr_val[1] |= LSM6DSL_RESET_VALUE;
  225. printf("LSM6DSL ACC_GYRO_CTRL3_C new:%02X\r\n",addr_val[1]);
  226. hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  227. if(HAL_OK!=hi2c2_status){
  228. printf("set LSM6DSL ACC_GYRO_CTRL3_C error\r\n");
  229. return 1;
  230. }
  231. printf("successfully LSM6DSL soft reset\r\n");
  232. return 0;
  233. }
  234. /*
  235. * 以正数为例,最大可到32767,如果是Accelerometer数据,量程为2g的情况下,
  236. * 32768个刻度,一个刻度代表:2g/32768 = 2000mg/32767 = 0.061035mg
  237. * 例如:如果读出数据为16384,则加速度:16384x0.061035mg = 1000mg = 1g
  238. */
  239. uint8_t LSM6DSL_acc_set_range(uint32_t range)
  240. {
  241. HAL_StatusTypeDef hi2c2_status = 0x00;
  242. /*first read*/
  243. uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL1_XL,0x00};
  244. hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  245. if(HAL_OK!=hi2c2_status){
  246. printf("get LSM6DSL acc range error\r\n");
  247. return 1;
  248. }
  249. uint8_t tmp = 0;
  250. switch (range) {
  251. case ACC_RANGE_2G: {
  252. tmp = LSM6DSL_ACC_RANGE_2G;
  253. } break;
  254. case ACC_RANGE_4G: {
  255. tmp = LSM6DSL_ACC_RANGE_4G;
  256. } break;
  257. case ACC_RANGE_8G: {
  258. tmp = LSM6DSL_ACC_RANGE_8G;
  259. } break;
  260. case ACC_RANGE_16G: {
  261. tmp = LSM6DSL_ACC_RANGE_16G;
  262. } break;
  263. default:
  264. break;
  265. }
  266. addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_RANGE, tmp);
  267. hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  268. if(HAL_OK!=hi2c2_status){
  269. printf("set LSM6DSL acc range error\r\n");
  270. return 1;
  271. }
  272. if (range <= ACC_RANGE_16G) {
  273. cur_acc_factor = lsm6dsl_acc_factor[range];
  274. }
  275. printf("successfully LSM6DSL set acc range\r\n");
  276. return 0;
  277. }
  278. static uint8_t acc_st_lsm6dsl_hz2odr(uint32_t hz)
  279. {
  280. if (hz > 3330)
  281. return LSM6DSL_ACC_ODR_6_66_KHZ;
  282. else if (hz > 1660)
  283. return LSM6DSL_ACC_ODR_3_33_KHZ;
  284. else if (hz > 833)
  285. return LSM6DSL_ACC_ODR_1_66_KHZ;
  286. else if (hz > 416)
  287. return LSM6DSL_ACC_ODR_833_HZ;
  288. else if (hz > 208)
  289. return LSM6DSL_ACC_ODR_416_HZ;
  290. else if (hz > 104)
  291. return LSM6DSL_ACC_ODR_208_HZ;
  292. else if (hz > 52)
  293. return LSM6DSL_ACC_ODR_104_HZ;
  294. else if (hz > 26)
  295. return LSM6DSL_ACC_ODR_52_HZ;
  296. else if (hz > 13)
  297. return LSM6DSL_ACC_ODR_26_HZ;
  298. else if (hz >= 2)
  299. return LSM6DSL_ACC_ODR_12_5_HZ;
  300. else
  301. return LSM6DSL_ACC_ODR_1_6_HZ;
  302. }
  303. uint8_t LSM6DSL_acc_set_odr(uint32_t hz)
  304. {
  305. HAL_StatusTypeDef hi2c2_status = 0x00;
  306. /*first read*/
  307. uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL1_XL,0x00};
  308. hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  309. if(HAL_OK!=hi2c2_status){
  310. printf("get LSM6DSL acc odr error\r\n");
  311. return 1;
  312. }
  313. uint8_t odr = acc_st_lsm6dsl_hz2odr(hz);
  314. addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR, odr);
  315. hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  316. if(HAL_OK!=hi2c2_status){
  317. printf("set LSM6DSL acc odr error\r\n");
  318. return 1;
  319. }
  320. printf("successfully LSM6DSL set acc odr\r\n");
  321. return 0;
  322. }
  323. uint8_t LSM6DSL_acc_power_mode(LSM6DSL_power_mode mode)
  324. {
  325. HAL_StatusTypeDef hi2c2_status = 0x00;
  326. /*first read*/
  327. uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL1_XL,0x00};
  328. hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  329. if(HAL_OK!=hi2c2_status){
  330. printf("get LSM6DSL acc power_mode error\r\n");
  331. return 1;
  332. }
  333. switch (mode) {
  334. case DEV_POWER_ON: {
  335. addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR,LSM6DSL_ACC_ODR_12_5_HZ);
  336. }
  337. break;
  338. case DEV_POWER_OFF: {
  339. addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR,LSM6DSL_ACC_ODR_POWER_DOWN);
  340. }
  341. break;
  342. case DEV_SLEEP: {
  343. addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR,LSM6DSL_ACC_ODR_12_5_HZ);
  344. }
  345. break;
  346. default:
  347. break;
  348. }
  349. hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  350. if(HAL_OK!=hi2c2_status){
  351. printf("set LSM6DSL acc power_mode error\r\n");
  352. return 1;
  353. }
  354. printf("successfully LSM6DSL acc power_mode\r\n");
  355. return 0;
  356. }
  357. uint8_t LSM6DSL_acc_st_open(void)
  358. {
  359. uint8_t ret = 0;
  360. ret = LSM6DSL_acc_power_mode( DEV_POWER_ON);
  361. if (ret>0) {
  362. return ret;
  363. }
  364. ret = LSM6DSL_acc_set_range(ACC_RANGE_8G);
  365. if (ret>0) {
  366. return ret;
  367. }
  368. ret = LSM6DSL_acc_set_odr(LSM6DSL_ACC_DEFAULT_ODR_100HZ);
  369. if (ret>0) {
  370. return ret;
  371. }
  372. printf("successfully LSM6DSL acc open\r\n");
  373. return 0;
  374. }
  375. uint8_t LSM6DSL_acc_st_close(void)
  376. {
  377. uint8_t ret = 0;
  378. ret = LSM6DSL_acc_power_mode(DEV_POWER_OFF);
  379. if (ret>0) {
  380. return ret;
  381. }
  382. printf("successfully LSM6DSL acc close\r\n");
  383. return 0;
  384. }
  385. //LSM6DSL的满刻度加速度范围为±2/±4/±8/±16 g,角速度范围为±125/±250/±500/±1000/±2000 dps。
  386. uint8_t LSM6DSL_gyro_set_range(uint32_t range)
  387. {
  388. HAL_StatusTypeDef hi2c2_status = 0x00;
  389. /*first read*/
  390. uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL2_G,0x00};
  391. hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  392. if(HAL_OK!=hi2c2_status){
  393. printf("get LSM6DSL gyro range error\r\n");
  394. return 1;
  395. }
  396. uint8_t tmp = 0;
  397. switch (range) {
  398. case GYRO_RANGE_250DPS: {
  399. tmp = LSM6DSL_GYRO_RANGE_245;
  400. } break;
  401. case GYRO_RANGE_500DPS: {
  402. tmp = LSM6DSL_GYRO_RANGE_500;
  403. } break;
  404. case GYRO_RANGE_1000DPS: {
  405. tmp = LSM6DSL_GYRO_RANGE_1000;
  406. } break;
  407. case GYRO_RANGE_2000DPS: {
  408. tmp = LSM6DSL_GYRO_RANGE_2000;
  409. } break;
  410. default:
  411. break;
  412. }
  413. addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_RANGE, tmp);
  414. hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  415. if(HAL_OK!=hi2c2_status){
  416. printf("set LSM6DSL gyro range error\r\n");
  417. return 1;
  418. }
  419. if ((range >= GYRO_RANGE_250DPS) && (range <= GYRO_RANGE_2000DPS)) {
  420. cur_gyro_factor = lsm6dsl_gyro_factor[range];
  421. }
  422. printf("successfully LSM6DSL set gyro range\r\n");
  423. return 0;
  424. }
  425. static uint8_t gyro_st_lsm6dsl_hz2odr(uint32_t hz)
  426. {
  427. if (hz > 3330)
  428. return LSM6DSL_GYRO_ODR_6_66_KHZ;
  429. else if (hz > 1660)
  430. return LSM6DSL_GYRO_ODR_3_33_KHZ;
  431. else if (hz > 833)
  432. return LSM6DSL_GYRO_ODR_1_66_KHZ;
  433. else if (hz > 416)
  434. return LSM6DSL_GYRO_ODR_833_HZ;
  435. else if (hz > 208)
  436. return LSM6DSL_GYRO_ODR_416_HZ;
  437. else if (hz > 104)
  438. return LSM6DSL_GYRO_ODR_208_HZ;
  439. else if (hz > 52)
  440. return LSM6DSL_GYRO_ODR_104_HZ;
  441. else if (hz > 26)
  442. return LSM6DSL_GYRO_ODR_52_HZ;
  443. else if (hz > 13)
  444. return LSM6DSL_GYRO_ODR_26_HZ;
  445. else
  446. return LSM6DSL_GYRO_ODR_12_5_HZ;
  447. }
  448. uint8_t LSM6DSL_gyro_set_odr(uint32_t hz)
  449. {
  450. HAL_StatusTypeDef hi2c2_status = 0x00;
  451. /*first read*/
  452. uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL2_G,0x00};
  453. hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  454. if(HAL_OK!=hi2c2_status){
  455. printf("get LSM6DSL gyro odr error\r\n");
  456. return 1;
  457. }
  458. uint8_t odr = gyro_st_lsm6dsl_hz2odr(hz);
  459. addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR, odr);
  460. hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  461. if(HAL_OK!=hi2c2_status){
  462. printf("set LSM6DSL gyro odr error\r\n");
  463. return 1;
  464. }
  465. printf("successfully LSM6DSL set gyro odr\r\n");
  466. return 0;
  467. }
  468. uint8_t LSM6DSL_gyro_power_mode(LSM6DSL_power_mode mode)
  469. {
  470. HAL_StatusTypeDef hi2c2_status = 0x00;
  471. /*first read*/
  472. uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL2_G,0x00};
  473. hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  474. if(HAL_OK!=hi2c2_status){
  475. printf("get LSM6DSL gyro power_mode error\r\n");
  476. return 1;
  477. }
  478. switch (mode) {
  479. case DEV_POWER_ON: {
  480. addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR,LSM6DSL_GYRO_ODR_12_5_HZ);
  481. break;
  482. }
  483. case DEV_POWER_OFF: {
  484. addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR,LSM6DSL_GYRO_ODR_POWER_DOWN);
  485. break;
  486. }
  487. case DEV_SLEEP: {
  488. addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR,LSM6DSL_GYRO_ODR_12_5_HZ);
  489. break;
  490. }
  491. default:
  492. break;
  493. }
  494. hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
  495. if(HAL_OK!=hi2c2_status){
  496. printf("set LSM6DSL gyro power_mode error\r\n");
  497. return 1;
  498. }
  499. printf("successfully LSM6DSL gyro power_mode\r\n");
  500. return 0;
  501. }
  502. uint8_t LSM6DSL_gyro_st_open(void)
  503. {
  504. uint8_t ret = 0;
  505. ret = LSM6DSL_gyro_power_mode(DEV_POWER_ON);
  506. if (ret>0) {
  507. return 1;
  508. }
  509. ret = LSM6DSL_gyro_set_range(GYRO_RANGE_1000DPS);
  510. if (ret>0) {
  511. return 1;
  512. }
  513. ret = LSM6DSL_gyro_set_odr(LSM6DSL_GYRO_DEFAULT_ODR_100HZ);
  514. if (ret>0) {
  515. return 1;
  516. }
  517. printf("successfully LSM6DSL gyro open\r\n");
  518. return 0;
  519. }
  520. uint8_t LSM6DSL_gyro_st_close(void)
  521. {
  522. uint8_t ret = 0;
  523. ret = LSM6DSL_gyro_power_mode(DEV_POWER_OFF);
  524. if (ret>0) {
  525. return 1;
  526. }
  527. printf("successfully LSM6DSL gyro close\r\n");
  528. return 0;
  529. }
  530. void LSM6DSL_init()
  531. {
  532. if(LSM6DSL_ID_check()>0)
  533. return;
  534. if(LSM6DSL_soft_reset()>0)
  535. return;
  536. if(LSM6DSL_acc_power_mode(DEV_POWER_OFF)>0)
  537. return;
  538. if(LSM6DSL_gyro_power_mode(DEV_POWER_OFF)>0)
  539. return;
  540. printf("successfully LSM6DSL init\r\n");
  541. }
  542. #define DATA_AXIS_X 0
  543. #define DATA_AXIS_Y 1
  544. #define DATA_AXIS_Z 2
  545. uint8_t LSM6DSL_acc_read(int32_t *x_data,int32_t *y_data,int32_t *z_data)
  546. {
  547. HAL_StatusTypeDef hi2c2_status = 0x00;
  548. /*read 0X28,0X29,0X2A,0X2B,0X2C,0X2D*/
  549. uint8_t addr[6] = {LSM6DSL_ACC_GYRO_OUTX_L_XL,LSM6DSL_ACC_GYRO_OUTX_H_XL,
  550. LSM6DSL_ACC_GYRO_OUTY_L_XL,LSM6DSL_ACC_GYRO_OUTY_H_XL,
  551. LSM6DSL_ACC_GYRO_OUTZ_L_XL,LSM6DSL_ACC_GYRO_OUTZ_H_XL};
  552. uint8_t val[6] = {0};
  553. for(uint8_t i=0; i<6; i++){
  554. hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr[i],1,&val[i],1,1000);
  555. if(HAL_OK!=hi2c2_status){
  556. printf("get LSM6DSL acc_read[0X%02X] error\r\n",addr[i]);
  557. return 1;
  558. }
  559. }
  560. // printf("read acc reg_data 1:%02X, 2:%02X, 3:%02X, 4:%02X, 5:%02X ,6:%02X\r\n"
  561. // ,val[0],val[1],val[2],val[3],val[4],val[5]);
  562. int32_t data[3] = {0};
  563. data[DATA_AXIS_X] = (int16_t)((((int16_t)((int8_t)val[1])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[0]));
  564. data[DATA_AXIS_Y] = (int16_t)((((int16_t)((int8_t)val[3])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[2]));
  565. data[DATA_AXIS_Z] = (int16_t)((((int16_t)((int8_t)val[5])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[4]));
  566. if (cur_acc_factor != 0)
  567. {
  568. data[DATA_AXIS_X] = (data[DATA_AXIS_X] * cur_acc_factor) / LSM6DSL_ACC_MUL;
  569. data[DATA_AXIS_Y] = (data[DATA_AXIS_Y] * cur_acc_factor) / LSM6DSL_ACC_MUL;
  570. data[DATA_AXIS_Z] = (data[DATA_AXIS_Z] * cur_acc_factor) / LSM6DSL_ACC_MUL;
  571. }
  572. // printf("read acc cur_acc_factor:%ld, X:%ld,Y:%ld,Z:%ld\r\n"
  573. // ,cur_acc_factor,data[0],data[1],data[2]);
  574. *x_data = data[DATA_AXIS_X];
  575. *y_data = data[DATA_AXIS_Y];
  576. *z_data = data[DATA_AXIS_Z];
  577. return 0;
  578. }
  579. uint8_t LSM6DSL_gyro_read(int32_t *x_data,int32_t *y_data,int32_t *z_data)
  580. {
  581. HAL_StatusTypeDef hi2c2_status = 0x00;
  582. /*read 0X22,0X23,0X24,0X25,0X26,0X27*/
  583. uint8_t addr[6] = {LSM6DSL_ACC_GYRO_OUTX_L_G,LSM6DSL_ACC_GYRO_OUTX_H_G,
  584. LSM6DSL_ACC_GYRO_OUTY_L_G,LSM6DSL_ACC_GYRO_OUTY_H_G,
  585. LSM6DSL_ACC_GYRO_OUTZ_L_G,LSM6DSL_ACC_GYRO_OUTZ_H_G};
  586. uint8_t val[6] = {0};
  587. for(uint8_t i=0; i<6; i++){
  588. hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr[i],1,&val[i],1,1000);
  589. if(HAL_OK!=hi2c2_status){
  590. printf("get LSM6DSL gyro_read[0X%02X] error\r\n",addr[i]);
  591. return 1;
  592. }
  593. }
  594. // printf("read gyro reg_data 1:%02X, 2:%02X, 3:%02X, 4:%02X, 5:%02X ,6:%02X\r\n"
  595. // ,val[0],val[1],val[2],val[3],val[4],val[5]);
  596. int32_t data[3] = {0};
  597. data[DATA_AXIS_X] = (int16_t)((((int32_t)((int8_t)val[1])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[0]));
  598. data[DATA_AXIS_Y] = (int16_t)((((int32_t)((int8_t)val[3])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[2]));
  599. data[DATA_AXIS_Z] = (int16_t)((((int32_t)((int8_t)val[5])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[4]));
  600. if (cur_gyro_factor != 0) {
  601. data[DATA_AXIS_X] = (data[DATA_AXIS_X] * cur_gyro_factor) / LSM6DSL_GYRO_MUL;
  602. data[DATA_AXIS_Y] = (data[DATA_AXIS_Y] * cur_gyro_factor) / LSM6DSL_GYRO_MUL;
  603. data[DATA_AXIS_Z] = (data[DATA_AXIS_Z] * cur_gyro_factor) / LSM6DSL_GYRO_MUL;
  604. }
  605. // printf("read gyro cur_gyro_factor:%ld, X:%ld,Y:%ld,Z:%ld\r\n"
  606. // ,cur_gyro_factor,data[0],data[1],data[2]);
  607. *x_data = data[DATA_AXIS_X];
  608. *y_data = data[DATA_AXIS_Y];
  609. *z_data = data[DATA_AXIS_Z];
  610. return 0;
  611. }

2.3 传感器数据采集与输出源码设计

        在main.c文件中,添加各个外设驱动头文件支持

  1. /* Private includes ----------------------------------------------------------*/
  2. /* USER CODE BEGIN Includes */
  3. #include "../../ICore/key/key.h"
  4. #include "../../ICore/led/led.h"
  5. #include "../../ICore/print/print.h"
  6. #include "../../ICore/usart/usart.h"
  7. #include "../../ICore/LSM6DSL/LSM6DSL.h"
  8. /* USER CODE END Includes */

        打印实时采集的三轴加速度信息

  1. /* Private user code ---------------------------------------------------------*/
  2. /* USER CODE BEGIN 0 */
  3. void out_print(int32_t acc_x, int32_t acc_y, int32_t acc_z)
  4. {
  5. if(acc_x>0)
  6. printf("%d.%d, ",(acc_x*98)/10000,((acc_x*98)%10000)/100);
  7. else
  8. printf("%d.%d, ",(acc_x*98)/10000,((-acc_x*98)%10000)/100);
  9. if(acc_y>0)
  10. printf("%d.%d, ",(acc_y*98)/10000,((acc_y*98)%10000)/100);
  11. else
  12. printf("%d.%d, ",(acc_y*98)/10000,((-acc_y*98)%10000)/100);
  13. if(acc_z>0)
  14. printf("%d.%d, ",(acc_z*98)/10000,((acc_z*98)%10000)/100);
  15. else
  16. printf("%d.%d, ",(acc_z*98)/10000,((-acc_z*98)%10000)/100);
  17. }
  18. /* USER CODE END 0 */

        在main函数中,初始化各个外设

  1. int main(void)
  2. {
  3. /* USER CODE BEGIN 1 */
  4. int32_t acc_x,acc_y,acc_z;
  5. /* USER CODE END 1 */
  6. /* MCU Configuration--------------------------------------------------------*/
  7. /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  8. HAL_Init();
  9. /* USER CODE BEGIN Init */
  10. /* USER CODE END Init */
  11. /* Configure the system clock */
  12. SystemClock_Config();
  13. /* USER CODE BEGIN SysInit */
  14. /* USER CODE END SysInit */
  15. /* Initialize all configured peripherals */
  16. MX_GPIO_Init();
  17. MX_DMA_Init();
  18. MX_I2C4_Init();
  19. MX_LPUART1_UART_Init();
  20. /* USER CODE BEGIN 2 */
  21. ResetPrintInit(&hlpuart1);
  22. HAL_UART_Receive_IT(&hlpuart1,(uint8_t *)&HLPUSART_NewData, 1); //再开启接收中断
  23. HLPUSART_RX_STA = 0;
  24. //LSM6DSL
  25. LSM6DSL_init();
  26. LSM6DSL_acc_st_open();
  27. acc_x = acc_y = acc_z = 0;
  28. uint8_t menu = 0;
  29. uint8_t step_size = 3;
  30. /* USER CODE END 2 */

        在main函数循环体内,实现根据按键采集传感器数据(开发板正面朝上):

        1)保持开发板在桌面不动,按键KEY0按下时,采集静止不动姿态时的三轴加速度,并每采集三次,输出一次姿态结果[1,0,0],再次按下KEY0时停止采集

        2)保持开发板在桌面左右移动,按键KEY1按下时,采集左右移动姿态时的三轴加速度,并每采集三次,输出一次姿态结果[0,1,0],再次按下KEY1时停止采集

        3)保持开发板在桌面上上下移动(垂直方向),按键KEY2按下时,采集左右移动姿态时的三轴加速度,并每采集三次,输出一次姿态结果[0,0,1],再次按下KEY2时停止采集

  1. /* USER CODE BEGIN WHILE */
  2. while (1)
  3. {
  4. if(HLPUSART_RX_STA&0xC000){//溢出或换行,重新开始
  5. printf("%.*s\r\n",HLPUSART_RX_STA&0X0FFF, HLPUSART_RX_BUF);
  6. HLPUSART_RX_STA=0;//接收错误,重新开始
  7. HAL_Delay(100);//等待
  8. }
  9. if(KEY_0())
  10. {
  11. if(menu&0x01)
  12. menu &= 0XFE; //取消静止不动数据刷新
  13. else{
  14. menu |= 0X01; //开启静止不动数据刷新
  15. }
  16. menu &= 0XF9; //取消其他数据刷新
  17. }
  18. if(KEY_1())
  19. {
  20. if(menu&0x02)
  21. menu &= 0XFD; //取消左右移动数据刷新
  22. else{
  23. menu |= 0X02; //开启左右移动数据刷新
  24. }
  25. menu &= 0XFA; //取消其他数据刷新
  26. }
  27. if(KEY_2())
  28. {
  29. if(menu&0x04)
  30. menu &= 0XFB; //取消上下移动数据刷新
  31. else{
  32. menu |= 0X04; //开启上下移动数据刷新
  33. }
  34. menu &= 0XFC; //取消其他数据刷新
  35. }
  36. if(menu&0x01)//静止不动
  37. {
  38. for(uint8_t i =0; i<step_size;i++){
  39. LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
  40. out_print(acc_x,acc_y,acc_z);
  41. HAL_Delay(100);//等待
  42. }
  43. printf("1, 0, 0\r\n");
  44. Toggle_led0();
  45. }
  46. if(menu&0x02)//左右移动
  47. {
  48. for(uint8_t i =0; i<step_size;i++){
  49. LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
  50. out_print(acc_x,acc_y,acc_z);
  51. HAL_Delay(100);//等待
  52. }
  53. printf("0, 1, 0\r\n");
  54. Toggle_led1();
  55. }
  56. if(menu&0x04)//上下移动
  57. {
  58. for(uint8_t i =0; i<step_size;i++){
  59. LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
  60. out_print(acc_x,acc_y,acc_z);
  61. HAL_Delay(100);//等待
  62. }
  63. printf("0, 0, 1\r\n");
  64. Toggle_led2();
  65. }
  66. /* USER CODE END WHILE */

2.4 编辑下载程序,采集数据

        编译程序及加载到开发板

         打开串口助手,连接开发板,先清空屏幕,然后按上述功能操作进行数据采集,每种姿态采集大概一分钟的数据,完成后保存数据。

         创建目录My_HAR_Study,将保存的txt文件拷贝到该目录,并将该文件修改为.csv后缀

 三、模型训练

        在该目录下,创建myrun.py文件,内容如下:

  1. #模型训练文件 myrun.py 训练 epochs 1000
  2. # myrun.py
  3. '''
  4. 开发板(正面朝上)姿态检测
  5. 静止不动、左右移动、上下移动
  6. 输入层 -> 隐藏层 -> 输出层
  7. '''
  8. # 导入工具包
  9. import pandas as pd
  10. import numpy as np
  11. from keras.models import Sequential
  12. from keras.layers import Dense, Dropout
  13. from keras.optimizers import SGD
  14. # %% 读取数据
  15. data = pd.read_csv('SaveWindows2023_1_28_16-31-14.csv', sep=',', header=None)
  16. data_x = data.loc[:, 0:8] # 取1~9列所有数据
  17. data_y = data.loc[:, 9:11]
  18. data_y.astype(int)
  19. #
  20. print("-x-")
  21. print(data_x[0:2])
  22. print("-y-")
  23. print(data_y[0:2])
  24. # %% 建立模型
  25. model = Sequential()
  26. # Dense(64) 是一个具有 64 个隐藏神经元的全连接层。
  27. # 在第一层必须指定所期望的输入数据尺寸:
  28. # 在这里,是一个 9 维的向量。
  29. model.add(Dense(64, activation='relu', input_dim=9))
  30. model.add(Dense(32, activation='relu'))
  31. model.add(Dense(3, activation='softmax'))
  32. sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
  33. model.compile(loss='categorical_crossentropy',
  34. optimizer=sgd,
  35. metrics=['accuracy'])
  36. model.fit(data_x, data_y,
  37. epochs=1000,
  38. batch_size=72)
  39. score = model.evaluate(data_x, data_y, batch_size=72)
  40. # 保存模型
  41. model.save('myhar.h5')

         当前目录启动命令行工具,运行python3 .\myrun.py命令,

四、cube.AI配置及c模型生成

        回到数据采集工程(stm32L496VGT6_AI),双击.ioc打开cubeMX配置页面。

         添加my_har模型,选择刚刚生成的keras模型文件(.h5),注意值生成模型,不需要应用程序。

         分析结果显示,模型精度很差,意料之中,毕竟神经网络层只进行了简单设计,实现不了那么复杂姿态识别,但验证模型没有错误,支持转换,可以用来演示完开发流程就OK。

         根据分析稍微调整一下heap和stack大小

         生成输出代码如下图所示。

五、模型调用及测试

        在项目属性设置页面,开启float支持

          在main.c源文件中,添加AI模型库的头文件

  1. /* Private includes ----------------------------------------------------------*/
  2. /* USER CODE BEGIN Includes */
  3. #include <stdlib.h>
  4. #include "../../ICore/key/key.h"
  5. #include "../../ICore/led/led.h"
  6. #include "../../ICore/print/print.h"
  7. #include "../../ICore/usart/usart.h"
  8. #include "../../ICore/LSM6DSL/LSM6DSL.h"
  9. #include "../../X-CUBE-AI/app/my_har.h"
  10. #include "../../X-CUBE-AI/app/my_har_data.h"
  11. /* USER CODE END Includes */

        在main.c源文件中,添加AI模型库支持函数

  1. /* Private user code ---------------------------------------------------------*/
  2. /* USER CODE BEGIN 0 */
  3. void out_print(int32_t acc_x, int32_t acc_y, int32_t acc_z)
  4. {
  5. if(acc_x>0)
  6. printf("%d.%d, ",(acc_x*98)/10000,((acc_x*98)%10000)/100);
  7. else
  8. printf("%d.%d, ",(acc_x*98)/10000,((-acc_x*98)%10000)/100);
  9. if(acc_y>0)
  10. printf("%d.%d, ",(acc_y*98)/10000,((acc_y*98)%10000)/100);
  11. else
  12. printf("%d.%d, ",(acc_y*98)/10000,((-acc_y*98)%10000)/100);
  13. if(acc_z>0)
  14. printf("%d.%d, ",(acc_z*98)/10000,((acc_z*98)%10000)/100);
  15. else
  16. printf("%d.%d, ",(acc_z*98)/10000,((-acc_z*98)%10000)/100);
  17. }
  18. /* Global handle to reference the instantiated C-model */
  19. static ai_handle network = AI_HANDLE_NULL;
  20. /* Global c-array to handle the activations buffer */
  21. AI_ALIGNED(32)
  22. static ai_u8 activations[AI_MY_HAR_DATA_ACTIVATIONS_SIZE];
  23. AI_ALIGNED(32)
  24. static ai_float in_data[AI_MY_HAR_IN_1_SIZE];
  25. AI_ALIGNED(32)
  26. static ai_float out_data[AI_MY_HAR_OUT_1_SIZE];
  27. /* Array of pointer to manage the model's input/output tensors */
  28. static ai_buffer *ai_input;
  29. static ai_buffer *ai_output;
  30. static ai_buffer_format fmt_input;
  31. static ai_buffer_format fmt_output;
  32. #define NSIZE 3
  33. void buf_print(void)
  34. {
  35. printf("in_data:");
  36. for (int i=0; i<AI_MY_HAR_IN_1_SIZE; i++)
  37. {
  38. printf("%.2f ",((ai_float*)in_data)[i]);
  39. }
  40. printf("\n");
  41. printf("out_data:");
  42. for (int i=0; i<AI_MY_HAR_OUT_1_SIZE; i++)
  43. {
  44. printf("%.2f ",((ai_float*)out_data)[i]);
  45. }
  46. printf("\n");
  47. }
  48. void aiPrintBufInfo(const ai_buffer *buffer)
  49. {
  50. printf("(%lu, %lu, %lu, %lu)", AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_BATCH),
  51. AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_HEIGHT),
  52. AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_WIDTH),
  53. AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_CHANNEL));
  54. printf(" buffer_size:%d ", (int)AI_BUFFER_SIZE(buffer));
  55. }
  56. void aiPrintDataType(const ai_buffer_format fmt)
  57. {
  58. if (AI_BUFFER_FMT_GET_TYPE(fmt) == AI_BUFFER_FMT_TYPE_FLOAT)
  59. printf("float%d ", (int)AI_BUFFER_FMT_GET_BITS(fmt));
  60. else if (AI_BUFFER_FMT_GET_TYPE(fmt) == AI_BUFFER_FMT_TYPE_BOOL) {
  61. printf("bool%d ", (int)AI_BUFFER_FMT_GET_BITS(fmt));
  62. } else { /* integer type */
  63. printf("%s%d ", AI_BUFFER_FMT_GET_SIGN(fmt)?"i":"u",
  64. (int)AI_BUFFER_FMT_GET_BITS(fmt));
  65. }
  66. }
  67. void aiPrintDataInfo(const ai_buffer *buffer,const ai_buffer_format fmt)
  68. {
  69. if (buffer->data)
  70. printf(" @0x%X/%d \n",
  71. (int)buffer->data,
  72. (int)AI_BUFFER_BYTE_SIZE(AI_BUFFER_SIZE(buffer), fmt)
  73. );
  74. else
  75. printf(" (User Domain)/%d \n",
  76. (int)AI_BUFFER_BYTE_SIZE(AI_BUFFER_SIZE(buffer), fmt)
  77. );
  78. }
  79. void aiPrintNetworkInfo(const ai_network_report report)
  80. {
  81. printf("Model name : %s\n", report.model_name);
  82. printf(" model signature : %s\n", report.model_signature);
  83. printf(" model datetime : %s\r\n", report.model_datetime);
  84. printf(" compile datetime : %s\r\n", report.compile_datetime);
  85. printf(" runtime version : %d.%d.%d\r\n",
  86. report.runtime_version.major,
  87. report.runtime_version.minor,
  88. report.runtime_version.micro);
  89. if (report.tool_revision[0])
  90. printf(" Tool revision : %s\r\n", (report.tool_revision[0])?report.tool_revision:"");
  91. printf(" tools version : %d.%d.%d\r\n",
  92. report.tool_version.major,
  93. report.tool_version.minor,
  94. report.tool_version.micro);
  95. printf(" complexity : %lu MACC\r\n", (unsigned long)report.n_macc);
  96. printf(" c-nodes : %d\r\n", (int)report.n_nodes);
  97. printf(" map_activations : %d\r\n", report.map_activations.size);
  98. for (int idx=0; idx<report.map_activations.size;idx++) {
  99. const ai_buffer *buffer = &report.map_activations.buffer[idx];
  100. printf(" [%d] ", idx);
  101. aiPrintBufInfo(buffer);
  102. printf("\r\n");
  103. }
  104. printf(" map_weights : %d\r\n", report.map_weights.size);
  105. for (int idx=0; idx<report.map_weights.size;idx++) {
  106. const ai_buffer *buffer = &report.map_weights.buffer[idx];
  107. printf(" [%d] ", idx);
  108. aiPrintBufInfo(buffer);
  109. printf("\r\n");
  110. }
  111. }
  112. /*
  113. * Bootstrap
  114. */
  115. int aiInit(void) {
  116. ai_error err;
  117. /* Create and initialize the c-model */
  118. const ai_handle acts[] = { activations };
  119. err = ai_my_har_create_and_init(&network, acts, NULL);
  120. if (err.type != AI_ERROR_NONE) {
  121. printf("ai_error_type:%d,ai_error_code:%d\r\n",err.type,err.code);
  122. };
  123. ai_network_report report;
  124. if (ai_my_har_get_report(network, &report) != true) {
  125. printf("ai get report error\n");
  126. return -1;
  127. }
  128. aiPrintNetworkInfo(report);
  129. /* Reteive pointers to the model's input/output tensors */
  130. ai_input = ai_my_har_inputs_get(network, NULL);
  131. ai_output = ai_my_har_outputs_get(network, NULL);
  132. //
  133. fmt_input = AI_BUFFER_FORMAT(ai_input);
  134. fmt_output = AI_BUFFER_FORMAT(ai_output);
  135. printf(" n_inputs/n_outputs : %u/%u\r\n", report.n_inputs,
  136. report.n_outputs);
  137. printf("input :");
  138. aiPrintBufInfo(ai_input);
  139. aiPrintDataType(fmt_input);
  140. aiPrintDataInfo(ai_input, fmt_input);
  141. //
  142. printf("output :");
  143. aiPrintBufInfo(ai_output);
  144. aiPrintDataType(fmt_output);
  145. aiPrintDataInfo(ai_output, fmt_output);
  146. return 0;
  147. }
  148. int acquire_and_process_data(void *in_data,uint8_t index, int32_t acc_x, int32_t acc_y, int32_t acc_z)
  149. {
  150. char buf_srt[64]={0};
  151. if(acc_x>0){
  152. sprintf(buf_srt,"%d.%d, ",(acc_x*98)/10000,((acc_x*98)%10000)/100);
  153. ((ai_float*)in_data)[NSIZE*index] =(float)atof(buf_srt);
  154. }else{
  155. sprintf(buf_srt,"%d.%d, ",(acc_x*98)/10000,((-acc_x*98)%10000)/100);
  156. ((ai_float*)in_data)[NSIZE*index] =(float)atof(buf_srt);
  157. }
  158. if(acc_y>0){
  159. sprintf(buf_srt,"%d.%d, ",(acc_y*98)/10000,((acc_y*98)%10000)/100);
  160. ((ai_float*)in_data)[NSIZE*index+1] =(float)atof(buf_srt);
  161. }else{
  162. sprintf(buf_srt,"%d.%d, ",(acc_y*98)/10000,((-acc_y*98)%10000)/100);
  163. ((ai_float*)in_data)[NSIZE*index+1] =(float)atof(buf_srt);
  164. }
  165. if(acc_z>0){
  166. sprintf(buf_srt,"%d.%d, ",(acc_z*98)/10000,((acc_z*98)%10000)/100);
  167. ((ai_float*)in_data)[NSIZE*index+2] =(float)atof(buf_srt);
  168. }else{
  169. sprintf(buf_srt,"%d.%d, ",(acc_z*98)/10000,((-acc_z*98)%10000)/100);
  170. ((ai_float*)in_data)[NSIZE*index+2] =(float)atof(buf_srt);
  171. }
  172. return 0;
  173. }
  174. /*
  175. * Run inference
  176. */
  177. int aiRun(const void *in_data, void *out_data) {
  178. ai_i32 n_batch;
  179. ai_error err;
  180. /* 1 - Update IO handlers with the data payload */
  181. ai_input[0].data = AI_HANDLE_PTR(in_data);
  182. ai_output[0].data = AI_HANDLE_PTR(out_data);
  183. /* 2 - Perform the inference */
  184. n_batch = ai_my_har_run(network, &ai_input[0], &ai_output[0]);
  185. if (n_batch != 1) {
  186. err = ai_my_har_get_error(network);
  187. printf("ai_error_type:%d,ai_error_code:%d\r\n",err.type,err.code);
  188. };
  189. return 0;
  190. }
  191. /* USER CODE END 0 */

        在main函数中初始化ai模型

  1. /* USER CODE BEGIN 2 */
  2. ResetPrintInit(&hlpuart1);
  3. HAL_UART_Receive_IT(&hlpuart1,(uint8_t *)&HLPUSART_NewData, 1); //再开启接收中断
  4. HLPUSART_RX_STA = 0;
  5. //LSM6DSL
  6. LSM6DSL_init();
  7. LSM6DSL_acc_st_open();
  8. acc_x = acc_y = acc_z = 0;
  9. uint8_t menu = 0;
  10. uint8_t step_size = NSIZE;
  11. //
  12. aiInit();
  13. buf_print();
  14. /* USER CODE END 2 */

        在main函数循环体中,通过串口lpuart1调试发送test,开启将实时数据推送给ai模型

  1. /* Infinite loop */
  2. /* USER CODE BEGIN WHILE */
  3. while (1)
  4. {
  5. if(HLPUSART_RX_STA&0xC000){//溢出或换行,重新开始
  6. printf("%.*s\r\n",HLPUSART_RX_STA&0X0FFF, HLPUSART_RX_BUF);
  7. if(strstr((const char*)HLPUSART_RX_BUF,(const char*)"test"))
  8. {
  9. menu = 0x08;
  10. }
  11. HLPUSART_RX_STA=0;//接收错误,重新开始
  12. HAL_Delay(100);//等待
  13. }
  14. if(KEY_0())
  15. {
  16. if(menu&0x01)
  17. menu &= 0XFE; //取消静止不动数据刷新
  18. else{
  19. menu |= 0X01; //开启静止不动数据刷新
  20. }
  21. menu &= 0XF9; //取消其他数据刷新
  22. }
  23. if(KEY_1())
  24. {
  25. if(menu&0x02)
  26. menu &= 0XFD; //取消左右移动数据刷新
  27. else{
  28. menu |= 0X02; //开启左右移动数据刷新
  29. }
  30. menu &= 0XFA; //取消其他数据刷新
  31. }
  32. if(KEY_2())
  33. {
  34. if(menu&0x04)
  35. menu &= 0XFB; //取消上下移动数据刷新
  36. else{
  37. menu |= 0X04; //开启上下移动数据刷新
  38. }
  39. menu &= 0XFC; //取消其他数据刷新
  40. }
  41. if(menu&0x01)//静止不动
  42. {
  43. for(uint8_t i =0; i<step_size;i++){
  44. LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
  45. out_print(acc_x,acc_y,acc_z);
  46. HAL_Delay(100);//等待
  47. }
  48. printf("1, 0, 0\r\n");
  49. Toggle_led0();
  50. }
  51. if(menu&0x02)//左右移动
  52. {
  53. for(uint8_t i =0; i<step_size;i++){
  54. LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
  55. out_print(acc_x,acc_y,acc_z);
  56. HAL_Delay(100);//等待
  57. }
  58. printf("0, 1, 0\r\n");
  59. Toggle_led1();
  60. }
  61. if(menu&0x04)//上下移动
  62. {
  63. for(uint8_t i =0; i<step_size;i++){
  64. LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
  65. out_print(acc_x,acc_y,acc_z);
  66. HAL_Delay(100);//等待
  67. }
  68. printf("0, 0, 1\r\n");
  69. Toggle_led2();
  70. }
  71. if(menu&0x08)//测试
  72. {
  73. for(uint8_t i =0; i<step_size;i++){
  74. LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
  75. acquire_and_process_data(in_data,i,acc_x,acc_y,acc_z);
  76. HAL_Delay(100);//等待
  77. }
  78. aiRun(in_data, out_data);
  79. buf_print();
  80. }
  81. /* USER CODE END WHILE */

        编译及下载程序

         串口助手通过lpuart1连接开发板,发送“test”,开启AI计算,静止不动开发板情况如下:

         左右移动开发板测试输出:

         上下移动(垂直方向)开发板测试输出:

        通过测试可以看出,基本能识别开发板的行为,若需要更准确的识别,更好数据采集方法,也可以更多姿态行为模式计算(开发板不同朝向、倾斜度等)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/338918
推荐阅读
相关标签
  

闽ICP备14008679号