赞
踩
为了对前面的word embedding这种常用的文本向量化的方法进行巩固,这里我们会完成一个文本情感分类的案例
现在我们有一个经典的数据集IMDB
数据集,地址:http://ai.stanford.edu/~amaas/data/sentiment/
,这是一份包含了5万条流行电影的评论数据,其中训练集25000条,测试集25000条。数据格式如下:
下图左边为名称,其中名称包含两部分,分别是序号和情感评分,(1-4为neg,5-10为pos),右边为评论内容
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LD1YR3Z0-1613576332275)(…/images/1.3/样本名称.png)]
根据上述的样本,需要使用pytorch完成模型,实现对评论情感进行预测
首先可以把上述问题定义为分类问题,情感评分分为1-10,10个类别(也可以理解为回归问题,这里当做分类问题考虑)。那么根据之前的经验,我们的大致流程如下:
知道思路之后,那么我们一步步来完成上述步骤
准备数据集和之前的方法一样,实例化dataset,准备dataloader,最终我们的数据可以处理成如下格式:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M1Lx4Uq2-1613576332289)(…/images/1.3/情感分类-data加载1.png)]
其中有两点需要注意:
import torch from torch.utils.data import DataLoader,Dataset import os import re data_base_path = r"data\aclImdb" #1. 定义tokenize的方法 def tokenize(text): # fileters = '!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n' fileters = ['!','"','#','$','%','&','\(','\)','\*','\+',',','-','\.','/',':',';','<','=','>','\?','@' ,'\[','\\','\]','^','_','`','\{','\|','\}','~','\t','\n','\x97','\x96','”','“',] text = re.sub("<.*?>"," ",text,flags=re.S) text = re.sub("|".join(fileters)," ",text,flags=re.S) return [i.strip() for i in text.split()] #2. 准备dataset class ImdbDataset(Dataset): def __init__(self,mode): super(ImdbDataset,self).__init__() if mode=="train": text_path = [os.path.join(data_base_path,i) for i in ["train/neg","train/pos"]] else: text_path = [os.path.join(data_base_path,i) for i in ["test/neg","test/pos"]] self.total_file_path_list = [] for i in text_path: self.total_file_path_list.extend([os.path.join(i,j) for j in os.listdir(i)]) def __getitem__(self, idx): cur_path = self.total_file_path_list[idx] cur_filename = os.path.basename(cur_path) label = int(cur_filename.split("_")[-1].split(".")[0]) -1 #处理标题,获取label,转化为从[0-9] text = tokenize(open(cur_path).read().strip()) #直接按照空格进行分词 return label,text def __len__(self): return len(self.total_file_path_list) # 2. 实例化,准备dataloader dataset = ImdbDataset(mode="train") dataloader = DataLoader(dataset=dataset,batch_size=2,shuffle=True) #3. 观察数据输出结果 for idx,(label,text) in enumerate(dataloader): print("idx:",idx) print("table:",label) print("text:",text) break
输出如下:
idx: 0
table: tensor([3, 1])
text: [('I', 'Want'), ('thought', 'a'), ('this', 'great'), ('was', 'recipe'), ('a', 'for'), ('great', 'failure'), ('idea', 'Take'), ('but', 'a'), ('boy', 's'), ('was', 'y'), ('it', 'plot'), ('poorly', 'add'), ('executed', 'in'), ('We', 'some'), ('do', 'weak'), ('get', 'completely'), ('a', 'undeveloped'), ('broad', 'characters'), ('sense', 'and'), ('of', 'than'), ('how', 'throw'), ('complex', 'in'), ('and', 'the'), ('challenging', 'worst'), ('the', 'special'), ('backstage', 'effects'), ('operations', 'a'), ('of', 'horror'), ('a', 'movie'), ('show', 'has'), ('are', 'known'), ('but', 'Let'), ('virtually', 'stew'), ('no', 'for'), ...('show', 'somehow'), ('rather', 'destroy'), ('than', 'every'), ('anything', 'copy'), ('worth', 'of'), ('watching', 'this'), ('for', 'film'), ('its', 'so'), ('own', 'it'), ('merit', 'will')]
明显,其中的text内容出现对应,和想象的不太相似,出现问题的原因在于Dataloader
中的参数collate_fn
collate_fn
的默认值为torch自定义的default_collate
,collate_fn
的作用就是对每个batch进行处理,而默认的default_collate
处理出错。
解决问题的思路:
手段1:考虑先把数据转化为数字序列,观察其结果是否符合要求,之前使用DataLoader并未出现类似错误
手段2:考虑自定义一个collate_fn
,观察结果
这里使用方式2,自定义一个collate_fn
,然后观察结果:
def collate_fn(batch):
#batch是list,其中是一个一个元组,每个元组是dataset中__getitem__的结果
batch = list(zip(*batch))
labes = torch.tensor(batch[0],dtype=torch.int32)
texts = batch[1]
del batch
return labes,texts
dataloader = DataLoader(dataset=dataset,batch_size=2,shuffle=True,collate_fn=collate_fn)
#此时输出正常
for idx,(label,text) in enumerate(dataloader):
print("idx:",idx)
print("table:",label)
print("text:",text)
break
再介绍word embedding的时候,我们说过,不会直接把文本转化为向量,而是先转化为数字,再把数字转化为向量,那么这个过程该如何实现呢?
这里我们可以考虑把文本中的每个词语和其对应的数字,使用字典保存,同时实现方法把句子通过字典映射为包含数字的列表。
实现文本序列化之前,考虑以下几点:
思路分析:
import numpy as np class Word2Sequence(): UNK_TAG = "UNK" PAD_TAG = "PAD" UNK = 0 PAD = 1 def __init__(self): self.dict = { self.UNK_TAG :self.UNK, self.PAD_TAG :self.PAD } self.fited = False def to_index(self,word): """word -> index""" assert self.fited == True,"必须先进行fit操作" return self.dict.get(word,self.UNK) def to_word(self,index): """index -> word""" assert self.fited , "必须先进行fit操作" if index in self.inversed_dict: return self.inversed_dict[index] return self.UNK_TAG def __len__(self): return self(self.dict) def fit(self, sentences, min_count=1, max_count=None, max_feature=None): """ :param sentences:[[word1,word2,word3],[word1,word3,wordn..],...] :param min_count: 最小出现的次数 :param max_count: 最大出现的次数 :param max_feature: 总词语的最大数量 :return: """ count = {} for sentence in sentences: for a in sentence: if a not in count: count[a] = 0 count[a] += 1 # 比最小的数量大和比最大的数量小的需要 if min_count is not None: count = {k: v for k, v in count.items() if v >= min_count} if max_count is not None: count = {k: v for k, v in count.items() if v <= max_count} # 限制最大的数量 if isinstance(max_feature, int): count = sorted(list(count.items()), key=lambda x: x[1]) if max_feature is not None and len(count) > max_feature: count = count[-int(max_feature):] for w, _ in count: self.dict[w] = len(self.dict) else: for w in sorted(count.keys()): self.dict[w] = len(self.dict) self.fited = True # 准备一个index->word的字典 self.inversed_dict = dict(zip(self.dict.values(), self.dict.keys())) def transform(self, sentence,max_len=None): """ 实现吧句子转化为数组(向量) :param sentence: :param max_len: :return: """ assert self.fited, "必须先进行fit操作" if max_len is not None: r = [self.PAD]*max_len else: r = [self.PAD]*len(sentence) if max_len is not None and len(sentence)>max_len: sentence=sentence[:max_len] for index,word in enumerate(sentence): r[index] = self.to_index(word) return np.array(r,dtype=np.int64) def inverse_transform(self,indices): """ 实现从数组 转化为文字 :param indices: [1,2,3....] :return:[word1,word2.....] """ sentence = [] for i in indices: word = self.to_word(i) sentence.append(word) return sentence if __name__ == '__main__': w2s = Word2Sequence() w2s.fit([ ["你", "好", "么"], ["你", "好", "哦"]]) print(w2s.dict) print(w2s.fited) print(w2s.transform(["你","好","嘛"])) print(w2s.transform(["你好嘛"],max_len=10))
完成了wordsequence
之后,接下来就是保存现有样本中的数据字典,方便后续的使用。
实现对IMDB数据的处理和保存
#1. 对IMDB的数据记性fit操作 def fit_save_word_sequence(): from wordSequence import Word2Sequence ws = Word2Sequence() train_path = [os.path.join(data_base_path,i) for i in ["train/neg","train/pos"]] total_file_path_list = [] for i in train_path: total_file_path_list.extend([os.path.join(i, j) for j in os.listdir(i)]) for cur_path in tqdm(total_file_path_list,ascii=True,desc="fitting"): ws.fit(tokenize(open(cur_path).read().strip())) ws.build_vocab() # 对wordSequesnce进行保存 pickle.dump(ws,open("./model/ws.pkl","wb")) #2. 在dataset中使用wordsequence ws = pickle.load(open("./model/ws.pkl","rb")) def collate_fn(batch): MAX_LEN = 500 #MAX_LEN = max([len(i) for i in texts]) #取当前batch的最大值作为batch的最大长度 batch = list(zip(*batch)) labes = torch.tensor(batch[0],dtype=torch.int) texts = batch[1] #获取每个文本的长度 lengths = [len(i) if len(i)<MAX_LEN else MAX_LEN for i in texts] texts = torch.tensor([ws.transform(i, MAX_LEN) for i in texts]) del batch return labes,texts,lengths #3. 获取输出 dataset = ImdbDataset(ws,mode="train") dataloader = DataLoader(dataset=dataset,batch_size=20,shuffle=True,collate_fn=collate_fn) for idx,(label,text,length) in enumerate(dataloader): print("idx:",idx) print("table:",label) print("text:",text) print("length:",length) break
输出如下
idx: 0
table: tensor([ 7, 4, 3, 8, 1, 10, 7, 10, 7, 2, 1, 8, 1, 2, 2, 4, 7, 10,
1, 4], dtype=torch.int32)
text: tensor([[ 50983, 77480, 82366, ..., 1, 1, 1],
[ 54702, 57262, 102035, ..., 80474, 56457, 63180],
[ 26991, 57693, 88450, ..., 1, 1, 1],
...,
[ 51138, 73263, 80428, ..., 1, 1, 1],
[ 7022, 78114, 83498, ..., 1, 1, 1],
[ 5353, 101803, 99148, ..., 1, 1, 1]])
length: [296, 500, 221, 132, 74, 407, 500, 130, 54, 217, 80, 322, 72, 156, 94, 270, 317, 117, 200, 379]
思考:前面我们自定义了MAX_LEN作为句子的最大长度,如果我们需要把每个batch中的最长的句子长度作为当前batch的最大长度,该如何实现?
这里我们只练习使用word embedding,所以模型只有一层,即:
log_softmax
import torch import torch.nn as nn import torch.nn.functional as F from torch import optim from build_dataset import get_dataloader,ws,MAX_LEN class IMDBModel(nn.Module): def __init__(self,max_len): super(IMDBModel,self).__init__() self.embedding = nn.Embedding(len(ws),300,padding_idx=ws.PAD) #[N,300] self.fc = nn.Linear(max_len*300,10) #[max_len*300,10] def forward(self, x): embed = self.embedding(x) #[batch_size,max_len,300] embed = embed.view(x.size(0),-1) out = self.fc(embed) return F.log_softmax(out,dim=-1)
训练流程和之前相同
train_batch_size = 128 test_batch_size = 1000 imdb_model = IMDBModel(MAX_LEN) optimizer = optim.Adam(imdb_model.parameters()) criterion = nn.CrossEntropyLoss() def train(epoch): mode = True imdb_model.train(mode) train_dataloader =get_dataloader(mode,train_batch_size) for idx,(target,input,input_lenght) in enumerate(train_dataloader): optimizer.zero_grad() output = imdb_model(input) loss = F.nll_loss(output,target) #traget需要是[0,9],不能是[1-10] loss.backward() optimizer.step() if idx %10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, idx * len(input), len(train_dataloader.dataset), 100. * idx / len(train_dataloader), loss.item())) torch.save(imdb_model.state_dict(), "model/mnist_net.pkl") torch.save(optimizer.state_dict(), 'model/mnist_optimizer.pkl') def test(): test_loss = 0 correct = 0 mode = False imdb_model.eval() test_dataloader = get_dataloader(mode, test_batch_size) with torch.no_grad(): for target, input, input_lenght in test_dataloader: output = imdb_model(input) test_loss += F.nll_loss(output, target,reduction="sum") pred = torch.max(output,dim=-1,keepdim=False)[-1] correct = pred.eq(target.data).sum() test_loss = test_loss/len(test_dataloader.dataset) print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( test_loss, correct, len(test_dataloader.dataset), 100. * correct / len(test_dataloader.dataset))) if __name__ == '__main__': test() for i in range(3): train(i) test()
这里我们仅仅使用了一层全连接层,其分类效果不会很好,这里重点是理解常见的模型流程和word embedding的使用方法
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。