当前位置:   article > 正文

谷歌公布一个可以让 AI 进行自我判断输出内容正确性的模型训练框架 ASPIRE_ai实现主观题的判断

ai实现主观题的判断

谷歌开发了一款名为 ASPIRE 的训练框架,旨在增强人工智能(AI)模型的选择性预测能力。这款框架为模型引入了 “可信度” 机制,即模型会输出一系列答案,并为每个答案赋予一个正确概率评分。通过这种方式,ASPIRE 训练框架可以提高大语言模型的输出准确率,并使较小的模型经过微调后能够进行准确且有自信的预测。

ASPIRE 训练框架主要分为三个阶段:

  1. 首先是“特定任务调整”阶段,该阶段对已经接受过基础训练的大型语言模型进行深入训练,重点加强模型的预测能力。研究人员通过引入一系列可调参数,在特定任务的训练数据集上微调预训练语言模型,从而提高模型的预测性能,使其能够更好地解决特定问题。
  2. 第二阶段是 “答案采样”,在特定微调后,模型可以利用先前学习到的可调参数,为每个训练问题生成不同的答案,并创建用于自我评估学习的数据集,生成一系列可信度较高的答案。研究人员使用集束搜索(Beam Search)方法和 Rouge-L 算法来评估答案的质量,并将生成的答案及评分重新输入给模型,开启第三阶段。
  3. 第三阶段是 “自我评估学习”,研究人员为模型添加一组可调参数,专门用于提升模型的自我评估能力。该阶段的目标是让模型学会自己判断输出的答案准确性,从而在生成答案时附上答案的正确概率评分。

谷歌研究人员使用 CoQA、TriviaQA 和 SQuAD 三个问答数据集来验证 ASPIRE 训练框架的成果,结果显示经过 ASPIRE 调整的小模型表现远超更大的模型。这项实验结果也表明,经过适当调整,即使是较小的语言模型,在某些场景下也能超越大语言模型。

总的来说,ASPIRE 训练框架可以显著提升大语言模型的输出准确率,并使较小的模型经过微调后能够进行准确且有自信的预测。这一框架为 AI 模型引入了可信度机制,使其能够自我判断输出内容的正确性,从而在高风险决策类场合应用更加可靠。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/584089
推荐阅读
相关标签
  

闽ICP备14008679号