赞
踩
随着新一代信息通信技术和新一代人工智能技术迅猛发展,消费者消费行为和模式不断改变,以及国家间制造业乃至综合国力竞争日趋激烈,许多国家纷纷提出了智能制造发展战略,如德国提出的“工业4.0”战略规划、美国提出的“先进制造业伙伴” 计划,以及中国提出的“中国制造2025”战略规划等,以期在未来的产业竞争中占据竞争优势地位。
受到工业现场实时分析和控制,以及安全和隐私等方面需求的驱动,在智能制造系统中引入边缘计算成为一种趋势。尤其是 5G 技术的推广使得制造设备的大范围高速链接成为可能,将为工业互联网提供强有力的支撑。但如何实现云平台、边缘系统和物理系统的相互协同(简称“云边协同”),达到制造系统的整体优化,从而高效、安全、高质量地完成制造全生命周期的各项活动和任务,是智能制造系统面临的重大挑战。
近年来,智能制造系统中的云边协同问题受到产业界和学术界的关注。但关于云边协同智能制造的研究总体上还处于起步阶段。针对该问题,本文分析了智能制造需求和挑战,提出一个云边协同智能制造的系统架构;分析了云边协同的特点,对一些具有代表性的关键技术进行了讨论,最后给出一个智能制造系统云边协同调度方案。
工业智联网和智能制造云的构建及其高效协同是智能制造系统得以稳定运行的关键。当前智能制造发展在下述几个方面面临巨大的挑战。
1.智能制造云在构建实体加工设备的数字孪生技术有待进一步突破。数字孪生是根据云制造理念将制造资源 /制造能力虚拟化和服务化的技术,是物理制造系统的虚拟化映射。对于智能制造系统的稳定运行及其优化发挥着至关重要的作用。智能制造云构建已经研究了很长时间,然而,目前的研究主要针对软制造资源和简单硬制造资源开展虚拟化和服务化研究,复杂异构多样的硬制造资源的虚拟化和服务化技术尚有待进一步突破。
2.工业智联网是规模巨大的工业要素和工业过程的智能化的工业互联网。工业智联网实现了分布式装备、产线、车间、工厂等智慧化互联,从而实现物理制造系统的智能感知和云端接入。因此,构建工业智联网是实现智能制造的前提和基础。工业智联网的目的是要将分布式产线的各种要素通过各种网络互联,实现在网络边缘侧互联互通、智能感知和数据预处理等。当前工业智联网构建面临着一系列数字化、网络化挑战,例如,① 工业设备数字化程度有待提高,缺少开放接口,设备间缺少统一的互联互通标准;② 工业现场设备异构多样,协议复杂,互联互通困难;③ 工业现场设备和产线无法实现全面、智能感知,关键数据无法获取。④ 可采集到的数据质量不高,难以利用。
工业智联网和智能制造云集成和协同有待深入研究。工业智联网和智能制造云互为支撑,构成了一个规模巨大的信息物理系统(CPS,其中 C 是智能制造云、P 是工业智联网),保证智能制造系统的稳定、优化运行。工业智联网和智能制造云的集成和协同是构建集成统一的智能制造系统的关键。然而,由于智能制造系统分布、异构、规模巨大的特点,两者的集成和协同面临着巨大挑战。特别是在云边协同方面,需要垂直打通制造生命周期的各个环节,并处理大量动态、不确定性因素。目前还缺乏有效的针对智能制造系统的云边协同总体
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。