赞
踩
最近看完了《机器学习实战》和天池直播课堂中的决策树算法,觉得意犹未尽,特别是信息熵部分理解并不透彻,于是又把西瓜书中的决策树看了,略有感悟,希望与大家分享一下,下面我按照自己的理解,尽量用通俗的语言总结记录下决策树算法。
举个通俗的栗子来解释一下什么是决策树,想象一个女孩的母亲要给这个女孩介绍男朋友:
女儿:有没有房子?母亲:有。
女儿:长的帅不帅?母亲:挺帅的。
女儿:收入高不?
母亲:不算很高,中等情况。女儿:是公务员不?母亲:是,在税务局上班呢。
女儿:那好,我去见见。
这个女孩的决策过程就是典型的分类树决策。相当于通过是否有房、长相、收入和是否公务员对将男人分为两个类别:见和不见。下面我们通过流程图把女儿的决策树判断过程展现出来:
通过这个例子,大家已经对决策树算法有个基本了解了吧,这也是决策树算法的一大优势——数据形式非常容易理解。
下图是西瓜书中的决策树学习基本算法,接下来我们将根据这个算法流程用python代码自己写一棵决策树。
在构造决策树时,要解决的第一个问题就是,当前数据集哪个特征在划分数据分类时起决定性作用。在前面相亲的例子中,女孩为何第一个问题是“是否有房子”呢,因为是否有房子这个特征能够提供的“信息量”很大,划分选择就是找提供“信息量”最大的特征,学术上叫信息增益。
什么是信息增益呢,官方介绍请参考西瓜书哈,个人认为就是一个信息提纯的过程,比如一堆黄豆和一堆红豆混在一起,这时候信息的纯度是很低的,如果我们把红豆挑出来了分成两堆,那这时候纯度就高了。这就是一个信息增益的过程,衡量信息纯度的标准,就是信息熵。
信息熵是度量样本集合纯度最常用的一种指标,我的个人理解是对一个事件进行编码,所需要的平均码长就是信息熵,纯度越高,需要的平均代码就越短,信息熵越低。
当前样本集合D中第k类样本所占的比例为pk(k=1,2,…,n),则D的信息熵定义为
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。