赞
踩
- INCLUDE'自己电脑上岭回归的安装路径'.
- RIDGEREG DEP=因变量/ENTER 所要进行岭回归的自变量.
注意点:1.必须是自己电脑上岭回归的安装路径,每个人的安装路径不同
2.必须在英文状态下输入
3.后面的.不能省略,不要忘记哦。
寻找安装路径的过程可以参考如下步骤(可能会比较麻烦,可以根据自己实际情况进行调整):
步骤如下:
例如:INCLUDE'D:\spss\Samples\Simplified Chinese\Ridge Regression.sps'.
- INCLUDE'D:\spss\Samples\Simplified Chinese\Ridge Regression.sps'.
- RIDGEREG DEP=y/ENTER x1 x2 x3 x4 x5.
运行结果:
R-SQUARE AND BETA COEFFICIENTS FOR ESTIMATED VALUES OF K
K RSQ X1 x2 X3 X4 X5
______ ______ ________ ________ ________ ________ ________
.00000 .99594 .404689 -.084303 -.207535 .427629 .455073
.05000 .99228 .322220 .170229 .030219 .219072 .245235
.10000 .99005 .275674 .179740 .089634 .206704 .225707
.15000 .98853 .252472 .182563 .115930 .201223 .215804
.20000 .98724 .238173 .183299 .130290 .197557 .209343
.25000 .98601 .228200 .183116 .139007 .194641 .204525
.30000 .98475 .220659 .182456 .144618 .192118 .200628
.35000 .98343 .214626 .181523 .148343 .189834 .197307
.40000 .98203 .209597 .180425 .150842 .187709 .194373
.45000 .98054 .205274 .179223 .152503 .185702 .191716
.50000 .97897 .201468 .177954 .153569 .183786 .189267
.55000 .97730 .198055 .176645 .154199 .181943 .186979
.60000 .97555 .194949 .175310 .154501 .180162 .184821
.65000 .97372 .192088 .173962 .154554 .178435 .182770
.70000 .97181 .189429 .172608 .154414 .176755 .180810
.75000 .96981 .186937 .171255 .154121 .175118 .178927
.80000 .96775 .184586 .169906 .153707 .173521 .177113
.85000 .96562 .182357 .168564 .153197 .171960 .175358
.90000 .96342 .180233 .167232 .152610 .170433 .173658
.95000 .96116 .178202 .165912 .151960 .168938 .172007
1.0000 .95884 .176254 .164605 .151259 .167473 .170401
第一列为岭回归参数k,软件默认值从0到1,步长为0.05,共有21个值,第二列是判定系数,由岭回归图可以看出k值在0.1到0.3之间达到稳定,我们可以把岭回归取值范围改到[0.1,0.3],步长改为0.02,重新做岭回归。这需要增加一句语法程序,点选主菜单的Window——Syntax Editor返回语法窗口,语法命令如下:
- INCLUDE'D:\spss\Samples\Simplified Chinese\Ridge Regression.sps'.
- RIDGEREG DEP=y/ENTER x1 x2 x3 x4 x5
- /START=0.1/STOP=0.3/INC=0.02.
运行结果如下:
R-SQUARE AND BETA COEFFICIENTS FOR ESTIMATED VALUES OF K
K RSQ X1 x2 X3 X4 X5
______ ______ ________ ________ ________ ________ ________
.10000 .99885 .221110 .247245 .170288 .140618 .208331
.12000 .99854 .218220 .241646 .172134 .144984 .206702
.14000 .99822 .215697 .236882 .173535 .148473 .205220
.16000 .99788 .213456 .232754 .174598 .151296 .203853
.18000 .99753 .211435 .229125 .175397 .153599 .202578
.20000 .99716 .209591 .225894 .175988 .155490 .201376
.22000 .99677 .207891 .222985 .176412 .157049 .200235
.24000 .99637 .206310 .220341 .176700 .158337 .199146
.26000 .99595 .204829 .217918 .176876 .159400 .198099
.28000 .99551 .203431 .215682 .176959 .160277 .197091
综上分析可以看到,在岭参数k=0.2时岭迹图已经基本稳定,再参照复决定系数,当k=0.2,时
=0.99716仍然很大,因而可以选取岭参数k=0.2。然后给定k=0.2,重新做岭回归,语法如下:
- INCLUDE'D:\spss\Samples\Simplified Chinese\Ridge Regression.sps'.
- RIDGEREG DEP=y/ENTER x1 x2 x3 x4 x5
- /k=0.2.
计算结果如下:
Run MATRIX procedure:
****** Ridge Regression with k = 0.2 ******
Mult R .9985790
RSquare .9971600
Adj RSqu .9924267
SE 669.4007431
ANOVA table
df SS MS
Regress 5.000 471999907 94399981
Residual 3.000 1344292.1 448097.35
F value Sig F
210.6684638 .0005126
--------------Variables in the Equation----------------
B SE(B) Beta B/SE(B)
X1 .0132708 .0006606 .2095912 20.0880219
x2 .6616018 .0600392 .2258940 11.0195056
X3 .0023921 .0001675 .1759882 14.2809836
X4 .0232856 .0032633 .1554897 7.1357151
X5 2.2256100 .0776770 .2013760 28.6521157
Constant 176.3192880 249.3374002 .0000000 .7071514
------ END MATRIX -----
由此可以得到岭回归方程
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。