赞
踩
排队论又称随机服务系统,它应用于一切服务系统,包括生产管理系统、通信系统、交
通系统、计算机存储系统。它通过建立一些数学模型,以对随机发生的需求提供服务的系统
预测。现实生活中如排队买票、病人排队就诊、轮船进港、高速路上汽车排队通过收费站、
机器等待修理等等都属于排队论问题。
队长(通常记为 Ls ):是指系统中的平均顾客数(包括正在接受服务的顾客)。
等待队长(通常记为 Lq ):指系统中处于等待的顾客的数量。
平均逗留时间(通常记为Ws ):平均逗留时间是指顾客进入系统到离开系统这段时间,包括等待时间和接受服务的时间。
**平均等待时间(通常记为Wq ):**顾客的平均等待时间是指顾客进入系统到接受服务这段时间。
忙期:从顾客到达空闲的系统,服务立即开始,直到再次变为空闲,这段时间是系统连续繁忙的时期,称之为系统的忙期。
服务强度:服务强度=忙期/服务总时间=1─闲期/服务总时间。
实例:
Lingo代码:
model:
min=S;
lp=480;!每小时平均到达的电话数;
u=20;!服务率;
load=lp/u;!系统载荷;
Plost=@PEL(load,S);!损失率;
Plost<=0.05;
lpe=lp*(1-Plost);!实际每小时的平均服务数;
L_s=lpe/u;!平均队长;
eta=L_s/S;!系统服务台的效率;
@gin(S);
end
实例
Lingo代码:
model: sets: state/1..12/:P; endsets lp=18;!顾客到达率; u=5;!服务率; S=4;!服务员人数; K=12;!系统容量; P0+@sum(state(i):p(i))=1;!概率和; u*P(1)=lp*P0;!平衡点; @for(state(i)|i#GT#1#and#i#LT#S:lp*P(i-1)+(i+1)*u*P(i+1)=(lp+i*u)*p(i));!平衡点i[2,S-1]; @for(state(i)|i#GE#S#and#i#LT#K:lp*P(i-1)+S*u*P(i+1)=(lp+S*u)*P(i));!平衡点i(S,K-1); lp*P(K-1)=S*u*P(K);!平衡点K; Plost=P(K);!损失率; lpe=lp*(1-P(K));!实际到达率; L_s=@sum(state(i):i*p(i));!平均队长; L_q=L_s-lpe/u;!平均等待队长; W_s=L_s/lpe;!平均逗留时间; W_q=L_q/lpe;!平均等待时间; end
实例:
Lingo代码
model:
lp=1;!每小时故障到达数;
u=12;!服务率;
K=30;!机器数;
S=4;!维修工人数;
load=K*lp/u;
L_s=@pfs(load,S,K);!等待队长;
lpe=lp*(K-L_s);!进入维修的平均机器数;
Prob=(K-L_s)/K;!机器工作概率;
L_q=L_s-lpe/u;!平均等待队长;
W_q=L_q/lpe;!平均等待时间;
W_s=L_s/lpe;!平均逗留时间;
Pwork=lpe/(S*u);!维修工人的工作强度;
end
内容参考学习自:B站:排队论模型
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。