赞
踩
关注上方“深度学习技术前沿”,选择“星标公众号”,
技术干货,第一时间送达!
【导读】今天给大家整理了CVPR2020录用的几篇神经网络架构搜索方面的论文,神经网络架构搜索又称为Neural Architecture Search,简称(NAS)。神经网络架构搜索在这两年比较热门,学术界和国内外知名企业都在做这方面的研究。之后,本公众号后续将出一个NAS方面的专辑,主要包括NAS的发展历程、论文解读和应用场景。希望大家多多关注!
论文汇总
1.Blockwisely Supervised Neural Architecture Search with Knowledge Distillation(该论文在ImageNet数据集进行训练得到了78.4% top-1 accuracy ,比EfficientNet-B0高了2.1%个点)
作者团队:暗物智能、Monash 大学、中山大学
论文链接:https://arxiv.org/abs/1911.13053
2. Semi-Supervised Neural Architecture Search
作者团队:MSRA、中科大
论文链接:https://arxiv.org/abs/2002.10389
代码地址:https://github.com/renqianluo/SemiNAS
3. CARS: Continuous Evolution for Efficient Neural Architecture Search
作者团队:北大、华为诺亚、鹏城实验室、悉尼大学
论文链接:https://arxiv.org/abs/1909.04977
代码(即将开源):https://github.com/huawei-noah/CARS
4. Densely Connected Search Space for More Flexible Neural Architecture Search
论文链接:https://arxiv.org/abs/1906.09607
代码地址:https://github.com/JaminFong/DenseNAS
5. AdversarialNAS: Adversarial Neural Architecture Search for GANs
论文链接:https://arxiv.org/pdf/1912.02037.pdf
代码地址:https://github.com/chengaopro/AdversarialNAS
6. Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection
作者团队:北大、华为诺亚、悉尼大学
论文链接:https://arxiv.org/pdf/2003.11818.pdf
代码地址:https://github.com/ggjy/HitDet.pytorch
7. AOWS: Adaptive and optimal network width search with latency constraints
论文链接:https://arxiv.org/abs/2005.10481
代码地址:https://github.com/bermanmaxim/AOWS
8. MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning
论文:https://arxiv.org/abs/2003.14058
代码:https://github.com/bhpfelix/MTLNAS
9. Neural Architecture Search for Lightweight Non-Local Networks
论文:https://arxiv.org/abs/2004.01961
代码:https://github.com/LiYingwei/AutoNL
10. SGAS: Sequential Greedy Architecture Search
作者团队:KAUST, Intel
论文链接:https://arxiv.org/pdf/1912.00195.pdf
代码地址:https://www.deepgcns.org/auto/sgas
11. GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet
作者团队:商汤、清华、Dian、华科
论文链接:https://arxiv.org/abs/2003.11236
12. FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions(UC Berkley, Facebook)
论文链接:https://arxiv.org/abs/2004.05565
代码地址:https://github.com/facebookresearch/mobile-vision
13. MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation
作者团队:南加州、腾讯、港中文、港科大
论文链接:https://arxiv.org/abs/2003.12238
代码地址:https://github.com/chaoyanghe/MiLeNAS
14. Designing Network Design Spaces
作者团队:Facebook FAIR(何凯明团队)
论文链接:https://arxiv.org/abs/2003.13678
15. Search to Distill: Pearls are Everywhere but not the Eyes
作者团队:Google,港中文
论文链接:https://arxiv.org/abs/1911.09074
16. EcoNAS: Finding Proxies for Economical Neural Architecture Search
作者团队:悉尼大学,南洋理工,商汤
论文链接:https://arxiv.org/abs/2001.01233
17.DSNAS: Direct Neural Architecture Search without Parameter Retraining
作者团队:港中文、UCLA、剑桥、商汤
论文链接:https://arxiv.org/abs/2002.09128
18.MobileDets: Searching for Object Detection Architectures for Mobile Accelerators
论文作者:谷歌、威斯康星大学麦迪逊分校
论文链接:https://arxiv.org/abs/2004.14525
19. Rethinking Performance Estimation in Neural Architecture Search
论文:https://arxiv.org/abs/2005.09917
代码:https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS
解读1:https://www.zhihu.com/question/372070853/answer/1035234510
解读2:https://zhuanlan.zhihu.com/p/111167409
20. When NAS Meets Robustness: InSearchof RobustArchitecturesagainst Adversarial Attacks
作者团队:港中文、 MIT
论文链接:https://arxiv.org/abs/1911.10695
代码地址:https://github.com/gmh14/RobNets
NAS系列文章
(点击标题可跳转阅读)
重磅!DLer-NAS交流群已成立!
欢迎各位Cver加入NAS微信交流群,本群旨在交流模型压缩/量化/剪枝、NAS、迁移学习、自监督学习、无监督学习、元学习等内容。欢迎对这些研究方向感兴趣的小伙伴加群一起交流学习!
加群请备注:研究方向+学校/公司+昵称(如NAS+上交+小明)
???? 长按识别添加,邀请您进群!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。