当前位置:   article > 正文

【CVPR 2020】神经网络架构搜索(NAS)论文和代码汇总

efficient neural architecture search 源码

关注上方深度学习技术前沿,选择“星标公众号”

技术干货,第一时间送达!

【导读】今天给大家整理了CVPR2020录用的几篇神经网络架构搜索方面的论文,神经网络架构搜索又称为Neural Architecture Search,简称(NAS)。神经网络架构搜索在这两年比较热门,学术界和国内外知名企业都在做这方面的研究。之后,本公众号后续将出一个NAS方面的专辑,主要包括NAS的发展历程、论文解读和应用场景。希望大家多多关注

论文汇总

1.Blockwisely Supervised Neural Architecture Search with Knowledge Distillation(该论文在ImageNet数据集进行训练得到了78.4% top-1 accuracy ,比EfficientNet-B0高了2.1%个点)

  • 作者团队:暗物智能、Monash 大学、中山大学

  • 论文链接:https://arxiv.org/abs/1911.13053

2. Semi-Supervised Neural Architecture Search

  • 作者团队:MSRA、中科大

  • 论文链接:https://arxiv.org/abs/2002.10389

  • 代码地址:https://github.com/renqianluo/SemiNAS

3. CARS: Continuous Evolution for Efficient Neural Architecture Search

  • 作者团队:北大、华为诺亚、鹏城实验室、悉尼大学

  • 论文链接:https://arxiv.org/abs/1909.04977

  • 代码(即将开源):https://github.com/huawei-noah/CARS


4. Densely Connected Search Space for More Flexible Neural Architecture Search

  • 论文链接:https://arxiv.org/abs/1906.09607

  • 代码地址:https://github.com/JaminFong/DenseNAS

5. AdversarialNAS: Adversarial Neural Architecture Search for GANs

  • 论文链接:https://arxiv.org/pdf/1912.02037.pdf

  • 代码地址:https://github.com/chengaopro/AdversarialNAS

6. Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection

  • 作者团队:北大、华为诺亚、悉尼大学

  • 论文链接:https://arxiv.org/pdf/2003.11818.pdf

  • 代码地址:https://github.com/ggjy/HitDet.pytorch

7. AOWS: Adaptive and optimal network width search with latency constraints

  • 论文链接:https://arxiv.org/abs/2005.10481

  • 代码地址:https://github.com/bermanmaxim/AOWS

8. MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning

  • 论文:https://arxiv.org/abs/2003.14058

  • 代码:https://github.com/bhpfelix/MTLNAS

9. Neural Architecture Search for Lightweight Non-Local Networks

  • 论文:https://arxiv.org/abs/2004.01961

  • 代码:https://github.com/LiYingwei/AutoNL

10. SGAS: Sequential Greedy Architecture Search

  • 作者团队:KAUST, Intel

  • 论文链接:https://arxiv.org/pdf/1912.00195.pdf

  • 代码地址:https://www.deepgcns.org/auto/sgas

11. GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet

  • 作者团队:商汤、清华、Dian、华科

  • 论文链接:https://arxiv.org/abs/2003.11236

12. FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions(UC Berkley, Facebook)

  • 论文链接:https://arxiv.org/abs/2004.05565

  • 代码地址:https://github.com/facebookresearch/mobile-vision

13. MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation

  • 作者团队:南加州、腾讯、港中文、港科大

  • 论文链接:https://arxiv.org/abs/2003.12238

  • 代码地址:https://github.com/chaoyanghe/MiLeNAS

14. Designing Network Design Spaces

  • 作者团队:Facebook FAIR(何凯明团队)

  • 论文链接:https://arxiv.org/abs/2003.13678

15. Search to Distill: Pearls are Everywhere but not the Eyes

  • 作者团队:Google,港中文

  • 论文链接:https://arxiv.org/abs/1911.09074

16. EcoNAS: Finding Proxies for Economical Neural Architecture Search

  • 作者团队:悉尼大学,南洋理工,商汤

  • 论文链接:https://arxiv.org/abs/2001.01233

17.DSNAS: Direct Neural Architecture Search without Parameter Retraining

  • 作者团队:港中文、UCLA、剑桥、商汤

  • 论文链接:https://arxiv.org/abs/2002.09128

18.MobileDets: Searching for Object Detection Architectures for Mobile Accelerators

  • 论文作者:谷歌、威斯康星大学麦迪逊分校

  • 论文链接:https://arxiv.org/abs/2004.14525

19. Rethinking Performance Estimation in Neural Architecture Search

  • 论文:https://arxiv.org/abs/2005.09917

  • 代码:https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS

  • 解读1:https://www.zhihu.com/question/372070853/answer/1035234510

  • 解读2:https://zhuanlan.zhihu.com/p/111167409

20. When NAS Meets Robustness: InSearchof RobustArchitecturesagainst Adversarial Attacks

  • 作者团队:港中文、 MIT

  • 论文链接:https://arxiv.org/abs/1911.10695

  • 代码地址:https://github.com/gmh14/RobNets


NAS系列文章

(点击标题可跳转阅读)

重磅!DLer-NAS交流群已成立!

欢迎各位Cver加入NAS微信交流群,本群旨在交流模型压缩/量化/剪枝、NAS、迁移学习、自监督学习、无监督学习、元学习等内容。欢迎对这些研究方向感兴趣的小伙伴加群一起交流学习!

加群请备注:研究方向+学校/公司+昵称(如NAS+上交+小明

???? 长按识别添加,邀请您进群!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/675057
推荐阅读
相关标签
  

闽ICP备14008679号