赞
踩
「交互式数据探索系统中,『快』与『准』的需求如何做好平衡?」
「小白用户想做数据挖掘,分析方法不会选,怎么办?」
「数据检索需要遍历每一个数据,如何提升检索性能?」
上周五,Z 宝参加了一场干货满满的 Tech Talk,复旦大学计算机科学技术学院的荆一楠副教授和张凯副教授来到 Zilliz,与 Z 星的工程师们分享数据库领域前沿的研究方向。一起来看一看我们的思想火花吧:
荆一楠从哈勃望远镜谈起,引入数据探索的概念,介绍了团队在数据自动分析、数据可视化方向做的一系列工作,分享了团队研发的智能大数据探索系统—— DataHubble。
荆一楠指出,交互式数据探索系统需要做到“快狠准”
“让用户轻松地做选择”是荆一楠团队研发的初心。为了让系统实现更智能的分析方法推荐,DataHubble 首创了一种基于协同过滤和知识图谱的分析模型推荐方法(ModelAdvisor),与现有的 AutoML 方法相比,ModelAdvisor 引入了专家知识,大大增强了分析方法推荐的准确度,同步提升推荐可解释性。
DataHubble 架构图
除了分析方法推荐,DataHubble 在用户意图理解、精细化样本、敏捷分析、AQP on Text 等方面也取得了关键成果:
智能数据分析,融合了人工智能能力,可实现增强式的智能数据分析;自然语言交互,提升了大数据分析系统的易用性和分析效率;可视化的推荐,从根本上减少了人和数据之间的 gap。
张凯从现有的数据检索痛点入手,分享了 BinDex 数据扫描方法。
张凯分享 BinDex 原理
现有的数据检索分为索引扫描(Index scan)和顺序扫描(Sequential scan)两种方式,这两种方式各有优缺点:索引扫描通常采用 B+ 树等索引结构进行扫描,仅会访问满足谓词约束的数据,但是扫描过程会产生大量的随机访问,影响吞吐率;顺序扫描依次访问存储介质,扫描吞吐量高,但需要遍历所有数据。
为了找到较优的方法,用户在数据检索前要预判成本。然而,成本估算不一定准确,用户有时无法确定要使用哪种扫描方式。针对这个问题,张凯团队尝试用新的方法加速扫描过程。张凯团队研发的 BinDex 方法吸取了索引扫描和顺序扫描两者的优点,只需要触碰到满足条件的数据,在不同选择率(selectivity) 下都能达到比较好的性能。
BinDex 吸取了索引扫描和顺序扫描两方面的优点
如此强大的 BinDex 是如何实现的?张凯进一步介绍了 BinDex 的架构原理:BinDex 使用两层索引,第一层 Filter Layer 实现近似查找,第二层 Refine Layer 针对性地修改少量错误数据。当用户发出一个查询请求,系统会先找到和所要结果最相近的查找,随后更正并输出正确答案。
有了 BinDex 扫描,用户无需按传统的方法“预判-选择”,而是可以直接上手扫描。经测试,扫描速度至少提升了 1.6 倍。
BinDex 的实现原理
在未来,我们的科技乐园 Z 星会举办更多有趣、有用的技术沙龙。
让我们一起对新技术永葆好奇,创造革新的数据科学平台!
Z 宝与你,下期再见!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。