赞
踩
-
-
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- import os
-
- path = 'C:/Users/Sherlock/data/LogiReg_data.csv'
- pdData = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
- pdData.head()
- print(pdData.head())
- print(pdData.shape)
- positive = pdData[pdData['Admitted'] == 1] # 定义正
- nagative = pdData[pdData['Admitted'] == 0] # 定义负
- fig, ax = plt.subplots(figsize=(10, 5))#子图的行数为10,列数为5
- ax.scatter(positive['Exam1'], positive['Exam2'], s=30, c='b', marker='o', label='Admitted')#s是标量或形如shape的数组,c显而易见是color,lable是标记、
- ax.scatter(nagative['Exam1'], nagative['Exam2'], s=30, c='r', marker='x', label='not Admitted')
- ax.legend()
- ax.set_xlabel('Exam 1 score')#设置图标
- ax.set_ylabel('Exam 2 score')
- plt.show() # 画图
-
-
- ##实现算法 the logistics regression 目标建立一个分类器 设置阈值来判断录取结果
- ##sigmoid 函数
- def sigmoid(z):
- return 1 / (1 + np.exp(-z)) #sigmoid 函数,公式
-
-
- # 画图
- nums = np.arange(-10, 10, step=1)
- fig, ax = plt.subplots(figsize=(12, 4))
- ax.plot(nums, sigmoid(nums), 'r') # 画图定义
- plt.show()
-
-
- # 按照理论实现预测函数
- def model(X, theta):
- return sigmoid(np.dot(X, theta.T)) #X矩阵和theta的转置矩阵相乘
-
-
- pdData.insert(0, 'ones', 1) # 插入一列
- orig_data = pdData.as_matrix()#将dataframe 转换成数组,
- cols = orig_data.shape[1] #shape【0】是行数,【1】是列数
- X = orig_data[:, 0:cols - 1]
- y = orig_data[:, cols - 1:cols]
- theta = np.zeros([1, 3]) #用0填充矩阵行数为1列数为3
- print(X[:5])
- print(X.shape, y.shape, theta.shape)
-
-
- ##损失函数
- def cost(X, y, theta):
- left = np.multiply(-y, np.log(model(X, theta))) #0的情况下
- right = np.multiply(1 - y, np.log(1 - model(X, theta)))#1的情况下
- return np.sum(left - right) / (len(X))
-
-
- print(cost(X, y, theta))
-
-
- # 计算梯度
- def gradient(X, y, theta):
- grad = np.zeros(theta.shape)#theta的维数进行填充0
- error = (model(X, theta) - y).ravel()#二维数组变一维数组
- for j in range(len(theta.ravel())): # for each parmeter
- term = np.multiply(error, X[:, j])
- grad[0, j] = np.sum(term) / len(X)
-
- return grad
-
-
- ##比较3种不同梯度下降方法
- STOP_ITER = 0
- STOP_COST = 1
- STOP_GRAD = 2
-
-
- def stopCriterion(type, value, threshold):
- if type == STOP_ITER:
- return value > threshold
- elif type == STOP_COST:
- return abs(value[-1] - value[-2]) < threshold
- elif type == STOP_GRAD:
- return np.linalg.norm(value) < threshold
-
-
- import numpy.random
-
-
- # 打乱数据洗牌
- def shuffledata(data):
- np.random.shuffle(data)
- cols = data.shape[1]
- X = data[:, 0:cols - 1]
- y = data[:, cols - 1:]
- return X, y
-
-
- import time
-
-
- def descent(data, theta, batchSize, stopType, thresh, alpha):
- # 梯度下降求解
-
- init_time = time.time()
- i = 0 # 迭代次数
- k = 0 # batch
- X, y = shuffledata(data)
- grad = np.zeros(theta.shape) # 计算的梯度
- costs = [cost(X, y, theta)] # 损失值
-
- while True:
- grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta)
- k += batchSize # 取batch数量个数据
- if k >= n:
- k = 0
- X, y = shuffledata(data) # 重新洗牌
- theta = theta - alpha * grad # 参数更新
- costs.append(cost(X, y, theta)) # 计算新的损失
- i += 1
-
- if stopType == STOP_ITER:
- value = i
- elif stopType == STOP_COST:
- value = costs
- elif stopType == STOP_GRAD:
- value = grad
- if stopCriterion(stopType, value, thresh): break
-
- return theta, i - 1, costs, grad, time.time() - init_time
-
-
- # 选择梯度下降
- def runExpe(data, theta, batchSize, stopType, thresh, alpha):
- # import pdb; pdb.set_trace();
- theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
- name = "Original" if (data[:, 1] > 2).sum() > 1 else "Scaled"
- name += " data - learning rate: {} - ".format(alpha)
- if batchSize == n:
- strDescType = "Gradient"
- elif batchSize == 1:
- strDescType = "Stochastic"
- else:
- strDescType = "Mini-batch ({})".format(batchSize)
- name += strDescType + " descent - Stop: "
- if stopType == STOP_ITER:
- strStop = "{} iterations".format(thresh)
- elif stopType == STOP_COST:
- strStop = "costs change < {}".format(thresh)
- else:
- strStop = "gradient norm < {}".format(thresh)
- name += strStop
- print("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
- name, theta, iter, costs[-1], dur))
- fig, ax = plt.subplots(figsize=(12, 4))
- ax.plot(np.arange(len(costs)), costs, 'r')
- ax.set_xlabel('Iterations')
- ax.set_ylabel('Cost')
- ax.set_title(name.upper() + ' - Error vs. Iteration')
- return theta
-
-
- n = 100
- runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)
- plt.show()
- runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001)
- plt.show()
- runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)
- plt.show()
- # 对比
- runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)
- plt.show()
- runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002)
- plt.show()
- runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)
- plt.show()
- ##对数据进行标准化 将数据按其属性(按列进行)减去其均值,然后除以其方差。
- # 最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1
-
- from sklearn import preprocessing as pp
-
- scaled_data = orig_data.copy()
- scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])
-
- runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)
-
-
- # 设定阈值
- def predict(X, theta):
- return [1 if x >= 0.5 else 0 for x in model(X, theta)]
-
-
- # if __name__=='__main__':
-
- scaled_X = scaled_data[:, :3]
- y = scaled_data[:, 3]
- predictions = predict(scaled_X, theta)
- correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
- accuracy = (sum(map(int, correct)) % len(correct))
- print('accuracy = {0}%'.format(accuracy))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。