赞
踩
1、LDA作用
传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。
举个例子,有两个句子分别如下:
“乔布斯离我们而去了。”
“苹果价格会不会降?”
可以看到上面这两个句子没有共同出现的单词,但这两个句子是相似的,如果按传统的方法判断这两个句子肯定不相似,所以在判断文档相关性的时候需要考虑到文档的语义,而语义挖掘的利器是主题模型,LDA就是其中一种比较有效的模型。
在主题模型中,主题表示一个概念、一个方面,表现为一系列相关的单词,是这些单词的条件概率。形象来说,主题就是一个桶,里面装了出现概率较高的单词,这些单词与这个主题有很强的相关性。
怎样才能生成主题?对文章的主题应该怎么分析?这是主题模型要解决的问题。
首先,可以用生成模型来看文档和主题这两件事。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到的。那么,如果我们要生成一篇文档,它里面的每个词语出现的概率为:
这个概率公式可以用矩阵表示:
其中”文档-词语”矩阵表示每个文档中每个单词的词频,即出现的概率;”主题-词语”矩阵表示每个主题中每个单词的出现概率;”文档-主题”矩阵表示每个文档中每个主题出现的概率。
给定一系列文档,通过对文档进行分词,计算各个文档中每个单词的词频就可以得到左边这边”文档-词语”矩阵。主题模型就是通过左边这个矩阵进行训练,学习出右边两个矩阵。
2、LDA结构
LDA方法使生成的文档可以包含多个主题,该模型使用下面方法生成1个文档:
Chooseparameter θ ~ p(θ);
For each ofthe N words w_n:
Choose a topic z_n ~ p(z|θ);
Choose a word w_n ~ p(w|z);
其中θ是一个主题向量,向量的每一列表示每个主题在文档出现的概率,该向量为非负归一化向量;p(θ)是θ的分布,具体为Dirichlet分布,即分布的分布;N和w_n同上;z_n表示选择的主题,p(z|θ)表示给定θ时主题z的概率分布,具体为θ的值,即p(z=i|θ)= θ_i;p(w|z)同上。
这种方法首先选定一个主题向量θ,确定每个主题被选择的概率。然后在生成每个单词的时候,从主题分布向量θ中选择一个主题z,按主题z的单词概率分布生成一个单词。其图模型如下图所示:
从上图可知LDA的联合概率为:
把上面的式子对应到图上,可以大致按下图理解:
从上图可以看出,LDA的三个表示层被三种颜色表示出来:
1. corpus-level(红色):α和β表示语料级别的参数,也就是每个文档都一样,因此生成过程只采样一次。
2.document-level(橙色):θ是文档级别的变量,每个文档对应一个θ,也就是每个文档产生各个主题z的概率是不同的,所有生成每个文档采样一次θ。
3. word-level(绿色):z和w都是单词级别变量,z由θ生成,w由z和β共同生成,一个 单词w对应一个主题z。
通过上面对LDA生成模型的讨论,可以知道LDA模型主要是从给定的输入语料中学习训练两个控制参数α和β,学习出了这两个控制参数就确定了模型,便可以用来生成文档。其中α和β分别对应以下各个信息:
α:分布p(θ)需要一个向量参数,即Dirichlet分布的参数,用于生成一个主题θ向量;
β:各个主题对应的单词概率分布矩阵p(w|z)。
把w当做观察变量,θ和z当做隐藏变量,就可以通过EM算法学习出α和β,求解过程中遇到后验概率p(θ,z|w)无法直接求解,需要找一个似然函数下界来近似求解,原文使用基于分解(factorization)假设的变分法(varialtional inference)进行计算,用到了EM算法。每次E-step输入α和β,计算似然函数,M-step最大化这个似然函数,算出α和β,不断迭代直到收敛。
参考文献:
1、http://blog.csdn.net/huagong_adu/article/details/7937616
2、http://www.cnblogs.com/pinard/p/6867828.html
3、http://www.cnblogs.com/pinard/p/6873703.html
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。