赞
踩
程序员开发指南Descriptionhttps://guide.996station.com
996技术站 - 活在未来 | KingSun966技术站,极客带你看世界!https://www.996station.com
1.请详细说说支持向量机(support vector machine,SVM)的原理。
一般不会问,但是你要用自己的话说出来。
2.哪些机器学习算法不需要做归一化处理?
解析:
在实际应用中,通过梯度下降法求解的模型一般都是需要归一化的,比如线性回归、logistic回归、KNN、SVM、神经网络等模型。
但树形模型不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、随机森林(Random Forest)。
归一化和标准化主要是为了使计算更方便 比如两个变量的量纲不同 可能一个的数值远大于另一个那么他们同时作为变量的时候 可能会造成数值计算的问题,比如说求矩阵的逆可能很不精确 或者梯度下降法的收敛比较困难,还有如果需要计算欧式距离的话可能 量纲也需要调整 所以我估计lr 和 knn 标准化一下应该有好处。
至于其他的算法 我也觉得如果变量量纲差距很大的话 先标准化一下会有好处。
3.在k-means或kNN,我们常用欧氏距离来计算最近的邻居之间的距离,有时也用曼哈顿距离,请对比下这两种距离的差别。
解析:
欧氏距离,最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 x = (x1,...,xn) 和 y = (y1,...,yn) 之间的距离为:
欧氏距离虽然很有用,但也有明显的缺点。它将样本的不同属性(即各指标或各变量量纲)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对人的分析和判别,个体的不同属性对于区分个体有着不同的重要性。因此,欧氏距离适用于向量各分量的度量标准统一的情况。
曼哈顿距离,我们可以定义曼哈顿距离的正式意义为L1-距离或城市区块距离,也就是在欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投影的距离总和。例如在平面上,坐标(x1, y1)的点P1与坐标(x2, y2)的点P2的曼哈顿距离为:,要注意的是,曼哈顿距离依赖座标系统的转度,而非系统在坐标轴上的平移或映射。当坐标轴变动时,点间的距离就会不同。
通俗来讲,想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。而实际驾驶距离就是这个“曼哈顿距离”,这也是曼哈顿距离名称的来源, 同时,曼哈顿距离也称为城市街区距离(City Block distance)。
曼哈顿距离和欧式距离一般用途不同,无相互替代性。
4.数据归一化(或者标准化,注意归一化和标准化不同)的原因。
解析:
要强调:能不归一化最好不归一化,之所以进行数据归一化是因为各维度的量纲不相同。而且需要看情况进行归一化。
有些模型在各维度进行了不均匀的伸缩后,最优解与原来不等价(如SVM)需要归一化。
有些模型伸缩有与原来等价,如:LR则不用归一化,但是实际中往往通过迭代求解模型参数,如果目标函数太扁(想象一下很扁的高斯模型)迭代算法会发生不收敛的情况,所以最坏进行数据归一化。
5.请简要说说一个完整机器学习项目的流程。
解析:
1 抽象成数学问题
明确问题是进行机器学习的第一步。机器学习的训练过程通常都是一件非常耗时的事情,胡乱尝试时间成本是非常高的。
这里的抽象成数学问题,指的我们明确我们可以获得什么样的数据,目标是一个分类还是回归或者是聚类的问题,如果都不是的话,如果划归为其中的某类问题。
2 获取数据
数据决定了机器学习结果的上限,而算法只是尽可能逼近这个上限。
数据要有代表性,否则必然会过拟合。
而且对于分类问题,数据偏斜不能过于严重,不同类别的数据数量不要有数个数量级的差距。
而且还要对数据的量级有一个评估,多少个样本,多少个特征,可以估算出其对内存的消耗程度,判断训练过程中内存是否能够放得下。如果放不下就得考虑改进算法或者使用一些降维的技巧了。如果数据量实在太大,那就要考虑分布式了。
3 特征预处理与特征选择
良好的数据要能够提取出良好的特征才能真正发挥效力。
特征预处理、数据清洗是很关键的步骤,往往能够使得算法的效果和性能得到显著提高。归一化、离散化、因子化、缺失值处理、去除共线性等,数据挖掘过程中很多时间就花在它们上面。这些工作简单可复制,收益稳定可预期,是机器学习的基础必备步骤。
筛选出显著特征、摒弃非显著特征,需要机器学习工程师反复理解业务。这对很多结果有决定性的影响。特征选择好了,非常简单的算法也能得出良好、稳定的结果。这需要运用特征有效性分析的相关技术,如相关系数、卡方检验、平均互信息、条件熵、后验概率、逻辑回归权重等方法。
4 训练模型与调优
直到这一步才用到我们上面说的算法进行训练。现在很多算法都能够封装成黑盒供人使用。但是真正考验水平的是调整这些算法的(超)参数,使得结果变得更加优良。这需要我们对算法的原理有深入的理解。理解越深入,就越能发现问题的症结,提出良好的调优方案。
5 模型诊断
如何确定模型调优的方向与思路呢?这就需要对模型进行诊断的技术。
过拟合、欠拟合 判断是模型诊断中至关重要的一步。常见的方法如交叉验证,绘制学习曲线等。过拟合的基本调优思路是增加数据量,降低模型复杂度。欠拟合的基本调优思路是提高特征数量和质量,增加模型复杂度。
误差分析 也是机器学习至关重要的步骤。通过观察误差样本,全面分析误差产生误差的原因:是参数的问题还是算法选择的问题,是特征的问题还是数据本身的问题……
诊断后的模型需要进行调优,调优后的新模型需要重新进行诊断,这是一个反复迭代不断逼近的过程,需要不断地尝试, 进而达到最优状态。
6 模型融合
一般来说,模型融合后都能使得效果有一定提升。而且效果很好。
工程上,主要提升算法准确度的方法是分别在模型的前端(特征清洗和预处理,不同的采样模式)与后端(模型融合)上下功夫。因为他们比较标准可复制,效果比较稳定。而直接调参的工作不会很多,毕竟大量数据训练起来太慢了,而且效果难以保证。
7 上线运行
这一部分内容主要跟工程实现的相关性比较大。工程上是结果导向,模型在线上运行的效果直接决定模型的成败。 不单纯包括其准确程度、误差等情况,还包括其运行的速度(时间复杂度)、资源消耗程度(空间复杂度)、稳定性是否可接受。
这些工作流程主要是工程实践上总结出的一些经验。并不是每个项目都包含完整的一个流程。这里的部分只是一个指导性的说明,只有大家自己多实践,多积累项目经验,才会有自己更深刻的认识。
6.逻辑斯特回归为什么要对特征进行离散化。
解析:
在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点:
0. 离散特征的增加和减少都很容易,易于模型的快速迭代;
1. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
2. 离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;
3. 逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;
4. 离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
5. 特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问;
6. 特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。
李沐曾经说过:模型是使用离散特征还是连续特征,其实是一个“海量离散特征+简单模型” 同 “少量连续特征+复杂模型”的权衡。既可以离散化用线性模型,也可以用连续特征加深度学习。就看是喜欢折腾特征还是折腾模型了。通常来说,前者容易,而且可以n个人一起并行做,有成功经验;后者目前看很赞,能走多远还须拭目以待。
7.简单介绍下LR
解析:
把LR从头到脚都给讲一遍。建模,现场数学推导,每种解法的原理,正则化,LR和maxent模型啥关系,lr为啥比线性回归好。有不少会背答案的人,问逻辑细节就糊涂了。
原理都会? 那就问工程,并行化怎么做,有几种并行化方式,读过哪些开源的实现。还会,那就准备收了吧,顺便逼问LR模型发展历史。
虽然逻辑斯蒂回归姓回归,不过其实它的真实身份是二分类器。先弄清楚一个概念:线性分类器。
给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类。
如果用x表示数据点,用y表示类别(y可以取1或者-1,分别代表两个不同的类),一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane)。
可能有读者对类别取1或-1有疑问,事实上,这个1或-1的分类标准起源于logistic回归。
Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用logistic函数(或称作sigmoid函数)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率。
从而,当我们要判别一个新来的特征属于哪个类时,只需求即可,若大于0.5就是y=1的类,反之属于y=0类。
8.overfitting怎么解决
解析:
overfitting就是过拟合, 其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集, 对训练集外的数据却不work, 这称之为泛化(generalization)性能不好。泛化性能是训练的效果评价中的首要目标,没有良好的泛化,就等于南辕北辙, 一切都是无用功。
过拟合是泛化的反面,好比乡下快活的刘姥姥进了大观园会各种不适应,但受过良好教育的林黛玉进贾府就不会大惊小怪。实际训练中, 降低过拟合的办法一般如下:
正则化(Regularization)
L2正则化:目标函数中增加所有权重w参数的平方之和, 逼迫所有w尽可能趋向零但不为零. 因为过拟合的时候, 拟合函数需要顾忌每一个点, 最终形成的拟合函数波动很大, 在某些很小的区间里, 函数值的变化很剧烈, 也就是某些w非常大. 为此, L2正则化的加入就惩罚了权重变大的趋势.
L1正则化:目标函数中增加所有权重w参数的绝对值之和, 逼迫更多w为零(也就是变稀疏. L2因为其导数也趋0, 奔向零的速度不如L1给力了). 大家对稀疏规则化趋之若鹜的一个关键原因在于它能实现特征的自动选择。一般来说,xi的大部分元素(也就是特征)都是和最终的输出yi没有关系或者不提供任何信息的,在最小化目标函数的时候考虑xi这些额外的特征,虽然可以获得更小的训练误差,但在预测新的样本时,这些没用的特征权重反而会被考虑,从而干扰了对正确yi的预测。稀疏规则化算子的引入就是为了完成特征自动选择的光荣使命,它会学习地去掉这些无用的特征,也就是把这些特征对应的权重置为0。
随机失活(dropout)
在训练的运行的时候,让神经元以超参数p的概率被激活(也就是1-p的概率被设置为0), 每个w因此随机参与, 使得任意w都不是不可或缺的, 效果类似于数量巨大的模型集成。
逐层归一化(batch normalization)
这个方法给每层的输出都做一次归一化(网络上相当于加了一个线性变换层), 使得下一层的输入接近高斯分布. 这个方法相当于下一层的w训练时避免了其输入以偏概全, 因而泛化效果非常好.
提前终止(early stopping)
理论上可能的局部极小值数量随参数的数量呈指数增长, 到达某个精确的最小值是不良泛化的一个来源. 实践表明, 追求细粒度极小值具有较高的泛化误差。这是直观的,因为我们通常会希望我们的误差函数是平滑的, 精确的最小值处所见相应误差曲面具有高度不规则性, 而我们的泛化要求减少精确度去获得平滑最小值, 所以很多训练方法都提出了提前终止策略. 典型的方法是根据交叉叉验证提前终止: 若每次训练前, 将训练数据划分为若干份, 取一份为测试集, 其他为训练集, 每次训练完立即拿此次选中的测试集自测. 因为每份都有一次机会当测试集, 所以此方法称之为交叉验证. 交叉验证的错误率最小时可以认为泛化性能最好, 这时候训练错误率虽然还在继续下降, 但也得终止继续训练了.
9.LR和SVM的联系与区别
解析:
联系:
1、LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题)
2、两个方法都可以增加不同的正则化项,如l1、l2等等。所以在很多实验中,两种算法的结果是很接近的。
区别:
1、LR是参数模型,SVM是非参数模型。
2、从目标函数来看,区别在于逻辑回归采用的是logistical loss,SVM采用的是hinge loss,这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。
3、SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重。
4、逻辑回归相对来说模型更简单,好理解,特别是大规模线性分类时比较方便。而SVM的理解和优化相对来说复杂一些,SVM转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,这个在进行复杂核函数计算时优势很明显,能够大大简化模型和计算。
5、logic 能做的 svm能做,但可能在准确率上有问题,svm能做的logic有的做不了。
10.LR与线性回归的区别与联系
解析:
LR工业上一般指Logistic Regression(逻辑回归)而不是Linear Regression(线性回归). LR在线性回归的实数范围输出值上施加sigmoid函数将值收敛到0~1范围, 其目标函数也因此从差平方和函数变为对数损失函数, 以提供最优化所需导数(sigmoid函数是softmax函数的二元特例, 其导数均为函数值的f*(1-f)形式)。请注意, LR往往是解决二元0/1分类问题的, 只是它和线性回归耦合太紧, 不自觉也冠了个回归的名字(马甲无处不在). 若要求多元分类,就要把sigmoid换成大名鼎鼎的softmax了。
个人感觉逻辑回归和线性回归首先都是广义的线性回归,
其次经典线性模型的优化目标函数是最小二乘,而逻辑回归则是似然函数,
另外线性回归在整个实数域范围内进行预测,敏感度一致,而分类范围,需要在[0,1]。逻辑回归就是一种减小预测范围,将预测值限定为[0,1]间的一种回归模型,因而对于这类问题来说,逻辑回归的鲁棒性比线性回归的要好。
逻辑回归的模型本质上是一个线性回归模型,逻辑回归都是以线性回归为理论支持的。但线性回归模型无法做到sigmoid的非线性形式,sigmoid可以轻松处理0/1分类问题。
11.简单说下有监督学习和无监督学习的区别
解析:
有监督学习:对具有标记的训练样本进行学习,以尽可能对训练样本集外的数据进行分类预测。(LR,SVM,BP,RF,GBDT)
无监督学习:对未标记的样本进行训练学习,比发现这些样本中的结构知识。(KMeans,DL)
12.请问(决策树、Random Forest、Booting、Adaboot)GBDT和XGBoost的区别是什么?
解析:
集成学习的集成对象是学习器. Bagging和Boosting属于集成学习的两类方法. Bagging方法有放回地采样同数量样本训练每个学习器, 然后再一起集成(简单投票); Boosting方法使用全部样本(可调权重)依次训练每个学习器, 迭代集成(平滑加权).
决策树属于最常用的学习器, 其学习过程是从根建立树, 也就是如何决策叶子节点分裂. ID3/C4.5决策树用信息熵计算最优分裂, CART决策树用基尼指数计算最优分裂, xgboost决策树使用二阶泰勒展开系数计算最优分裂.
下面所提到的学习器都是决策树:
Bagging方法:
学习器间不存在强依赖关系, 学习器可并行训练生成, 集成方式一般为投票;
Random Forest属于Bagging的代表, 放回抽样, 每个学习器随机选择部分特征去优化;
Boosting方法:
学习器之间存在强依赖关系、必须串行生成, 集成方式为加权和;
Adaboost属于Boosting, 采用指数损失函数替代原本分类任务的0/1损失函数;
GBDT属于Boosting的优秀代表, 对函数残差近似值进行梯度下降, 用CART回归树做学习器, 集成为回归模型;
xgboost属于Boosting的集大成者, 对函数残差近似值进行梯度下降, 迭代时利用了二阶梯度信息, 集成模型可分类也可回归. 由于它可在特征粒度上并行计算, 结构风险和工程实现都做了很多优化, 泛化, 性能和扩展性都比GBDT要好。
关于决策树,这里有篇《决策树算法》(链接:http://blog.csdn.net/v_july_v/article/details/7577684)。而随机森林Random Forest是一个包含多个决策树的分类器。至于AdaBoost,则是英文"Adaptive Boosting"(自适应增强)的缩写,关于AdaBoost可以看下这篇文章《Adaboost 算法的原理与推导》。GBDT(Gradient Boosting Decision Tree),即梯度上升决策树算法,相当于融合决策树和梯度上升boosting算法。
xgboost类似于gbdt的优化版,不论是精度还是效率上都有了提升。与gbdt相比,具体的优点有:
1.损失函数是用泰勒展式二项逼近,而不是像gbdt里的就是一阶导数
2.对树的结构进行了正则化约束,防止模型过度复杂,降低了过拟合的可能性
3.节点分裂的方式不同,gbdt是用的gini系数,xgboost是经过优化推导后的
13.为什么朴素贝叶斯如此“朴素”?
解析:
因为它假定所有的特征在数据集中的作用是同样重要和独立的。正如我们所知,这个假设在现实世界中是很不真实的,因此,说朴素贝叶斯真的很“朴素”。
朴素贝叶斯模型(Naive Bayesian Model)的朴素(Naive)的含义是"很简单很天真"地假设样本特征彼此独立. 这个假设现实中基本上不存在, 但特征相关性很小的实际情况还是很多的, 所以这个模型仍然能够工作得很好。
14.防止过拟合的方法
解析:
过拟合的原因是算法的学习能力过强;一些假设条件(如样本独立同分布)可能是不成立的;训练样本过少不能对整个空间进行分布估计。
处理方法:
1 早停止:如在训练中多次迭代后发现模型性能没有显著提高就停止训练
2 数据集扩增:原有数据增加、原有数据加随机噪声、重采样
3 正则化,正则化可以限制模型的复杂度
4 交叉验证
5 特征选择/特征降维
6 创建一个验证集是最基本的防止过拟合的方法。我们最终训练得到的模型目标是要在验证集上面有好的表现,而不训练集
15.简单说说贝叶斯定理。
解析:
在引出贝叶斯定理之前,先学习几个定义:
条件概率(又称后验概率)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。
比如,在同一个样本空间Ω中的事件或者子集A与B,如果随机从Ω中选出的一个元素属于B,那么这个随机选择的元素还属于A的概率就定义为在B的前提下A的条件概率,所以:P(A|B) = |A∩B|/|B|,接着分子、分母都除以|Ω|得到
联合概率表示两个事件共同发生的概率。A与B的联合概率表示为或者。
边缘概率(又称先验概率)是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中那些不需要的事件通过合并成它们的全概率,而消去它们(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率),这称为边缘化(marginalization),比如A的边缘概率表示为P(A),B的边缘概率表示为P(B)。
接着,考虑一个问题:P(A|B)是在B发生的情况下A发生的可能性。
首先,事件B发生之前,我们对事件A的发生有一个基本的概率判断,称为A的先验概率,用P(A)表示;
其次,事件B发生之后,我们对事件A的发生概率重新评估,称为A的后验概率,用P(A|B)表示;
类似的,事件A发生之前,我们对事件B的发生有一个基本的概率判断,称为B的先验概率,用P(B)表示;
同样,事件A发生之后,我们对事件B的发生概率重新评估,称为B的后验概率,用P(B|A)表示。
上述公式的推导其实非常简单,就是从条件概率推出。
16.如何进行特征选择?
解析:
特征选择是一个重要的数据预处理过程,主要有两个原因:一是减少特征数量、降维,使模型泛化能力更强,减少过拟合;二是增强对特征和特征值之间的理解
常见的特征选择方式:
1. 去除方差较小的特征
2. 正则化。1正则化能够生成稀疏的模型。L2正则化的表现更加稳定,由于有用的特征往往对应系数非零。
3. 随机森林,对于分类问题,通常采用基尼不纯度或者信息增益,对于回归问题,通常采用的是方差或者最小二乘拟合。一般不需要feature engineering、调参等繁琐的步骤。它的两个主要问题,1是重要的特征有可能得分很低(关联特征问题),2是这种方法对特征变量类别多的特征越有利(偏向问题)。
4. 稳定性选择。是一种基于二次抽样和选择算法相结合较新的方法,选择算法可以是回归、SVM或其他类似的方法。它的主要思想是在不同的数据子集和特征子集上运行特征选择算法,不断的重复,最终汇总特征选择结果,比如可以统计某个特征被认为是重要特征的频率(被选为重要特征的次数除以它所在的子集被测试的次数)。理想情况下,重要特征的得分会接近100%。稍微弱一点的特征得分会是非0的数,而最无用的特征得分将会接近于0。
17.数据预处理。
解析:
1. 缺失值,填充缺失值fillna:
i. 离散:None,
ii. 连续:均值。
iii. 缺失值太多,则直接去除该列
2. 连续值:离散化。有的模型(如决策树)需要离散值
3. 对定量特征二值化。核心在于设定一个阈值,大于阈值的赋值为1,小于等于阈值的赋值为0。如图像操作
4. 皮尔逊相关系数,去除高度相关的列
18.数据不平衡问题
解析:
这主要是由于数据分布不平衡造成的。解决方法如下:
采样,对小样本加噪声采样,对大样本进行下采样
数据生成,利用已知样本生成新的样本
进行特殊的加权,如在Adaboost中或者SVM中
采用对不平衡数据集不敏感的算法
改变评价标准:用AUC/ROC来进行评价
采用Bagging/Boosting/ensemble等方法
在设计模型的时候考虑数据的先验分布
19.特征比数据量还大时,选择什么样的分类器?
解析:
线性分类器,因为维度高的时候,数据一般在维度空间里面会比较稀疏,很有可能线性可分。
20.常见的分类算法有哪些?
解析:
SVM、神经网络、随机森林、逻辑回归、KNN、贝叶斯。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。