当前位置:   article > 正文

新闻主题分类任务NLP_[nlp]中文新闻主题分类

[nlp]中文新闻主题分类

关于新闻主题分类任务:

以一段新闻报道中的文本描述内容为输入, 使用模型帮助我们判断它最有可能属于哪一种类型的新闻, 这是典型的文本分类问题, 我们这里假定每种类型是互斥的, 即文本描述有且只有一种类型.

整个案例的实现可分为以下4个步骤
第一步: 构建带有Embedding层的文本分类模型.
第二步: 对数据进行batch处理.
第三步: 构建训练与验证函数.
第四步: 进行模型训练和验证

# 导入相关的torch工具包
import torch
import torchtext
# 导入torchtext.datasets中的文本分类任务
from torch.ao.sparsity import scheduler
from torch.optim import optimizer
from torchtext.datasets import AG_NEWS
import os

# 定义数据下载路径, 当前路径的data文件夹
load_data_path = "./data"
# 如果不存在该路径, 则创建这个路径
if not os.path.isdir(load_data_path):
    os.mkdir(load_data_path)

# 选取torchtext中的文本分类数据集'AG_NEWS'即新闻主题分类数据, 保存在指定目录下
# 并将数值映射后的训练和验证数据加载到内存中
# train_dataset, test_dataset = torchtext.datasets.AG_NEWS(root='.data', split=('train', 'test'))
train_dataset, test_dataset = torchtext.datasets.AG_NEWS(root='./data/ag_news_csv/', split=('train', 'test'))

# 导入必备的torch模型构建工具
import torch.nn as nn
import torch.nn.functional as F

# 指定BATCH_SIZE的大小
BATCH_SIZE = 16

# 进行可用设备检测, 有GPU的话将优先使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class TextSentiment(nn.Module):
    """文本分类模型"""
    def __init__(self, vocab_size, embed_dim, num_class):
        """
        description: 类的初始化函数
        :param vocab_size: 整个语料包含的不同词汇总数
        :param embed_dim: 指定词嵌入的维度
        :param num_class: 文本分类的类别总数
        """
        super().__init__()
        # 实例化embedding层, sparse=True代表每次对该层求解梯度时, 只更新部分权重.
        self.embedding = nn.Embedding(vocab_size, embed_dim, sparse=True)
        # 实例化线性层, 参数分别是embed_dim和num_class.
        self.fc = nn.Linear(embed_dim, num_class)
        # 为各层初始化权重
        self.init_weights()

    def init_weights(self):
        """初始化权重函数"""
        # 指定初始权重的取值范围数
        initrange = 0.5
        # 各层的权重参数都是初始化为均匀分布
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        # 偏置初始化为0
        self.fc.bias.data.zero_()

    def forward(self, text):
        """
        :param text: 文本数值映射后的结果
        :return: 与类别数尺寸相同的张量, 用以判断文本类别
        """
        # 获得embedding的结果embedded
        # >>> embedded.shape
        # (m, 32) 其中m是BATCH_SIZE大小的数据中词汇总数
        embedded = self.embedding(text)
        # 接下来我们需要将(m, 32)转化成(BATCH_SIZE, 32)
        # 以便通过fc层后能计算相应的损失
        # 首先, 我们已知m的值远大于BATCH_SIZE=16,
        # 用m整除BATCH_SIZE, 获得m中共包含c个BATCH_SIZE
        c = embedded.size(0) // BATCH_SIZE
        # 之后再从embedded中取c*BATCH_SIZE个向量得到新的embedded
        # 这个新的embedded中的向量个数可以整除BATCH_SIZE
        embedded = embedded[:BATCH_SIZE*c]
        # 因为我们想利用平均池化的方法求embedded中指定行数的列的平均数,
        # 但平均池化方法是作用在行上的, 并且需要3维输入
        # 因此我们对新的embedded进行转置并拓展维度
        embedded = embedded.transpose(1, 0).unsqueeze(0)
        # 然后就是调用平均池化的方法, 并且核的大小为c
        # 即取每c的元素计算一次均值作为结果
        embedded = F.avg_pool1d(embedded, kernel_size=c)
        # 最后,还需要减去新增的维度, 然后转置回去输送给fc层
        return self.fc(embedded[0].transpose(1, 0))


# 获得整个语料包含的不同词汇总数
VOCAB_SIZE = len(train_dataset.get_vocab())
# 指定词嵌入维度
EMBED_DIM = 32
# 获得类别总数
NUN_CLASS = len(train_dataset.get_labels())
# 实例化模型
model = TextSentiment(VOCAB_SIZE, EMBED_DIM, NUN_CLASS).to(device)

def generate_batch(batch):
    """
    description: 生成batch数据函数
    :param batch: 由样本张量和对应标签的元组组成的batch_size大小的列表
                  形如:
                  [(label1, sample1), (lable2, sample2), ..., (labelN, sampleN)]
    return: 样本张量和标签各自的列表形式(张量)
             形如:
             text = tensor([sample1, sample2, ..., sampleN])
             label = tensor([label1, label2, ..., labelN])
    """
    # 从batch中获得标签张量
    label = torch.tensor([entry[0] for entry in batch])
    # 从batch中获得样本张量
    text = [entry[1] for entry in batch]
    text = torch.cat(text)
    # 返回结果
    return text, label

# 导入torch中的数据加载器方法
from torch.utils.data import DataLoader

def train(train_data):
    """模型训练函数"""
    # 初始化训练损失和准确率为0
    train_loss = 0
    train_acc = 0

    # 使用数据加载器生成BATCH_SIZE大小的数据进行批次训练
    # data就是N多个generate_batch函数处理后的BATCH_SIZE大小的数据生成器
    data = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True,
                      collate_fn=generate_batch)

    # 对data进行循环遍历, 使用每个batch的数据进行参数更新
    for i, (text, cls) in enumerate(data):
        # 设置优化器初始梯度为0
        optimizer.zero_grad()
        # 模型输入一个批次数据, 获得输出
        output = model(text)
        # 根据真实标签与模型输出计算损失
        loss = criterion(output, cls)
        # 将该批次的损失加到总损失中
        train_loss += loss.item()
        # 误差反向传播
        loss.backward()
        # 参数进行更新
        optimizer.step()
        # 将该批次的准确率加到总准确率中
        train_acc += (output.argmax(1) == cls).sum().item()

    # 调整优化器学习率
    scheduler.step()

    # 返回本轮训练的平均损失和平均准确率
    return train_loss / len(train_data), train_acc / len(train_data)

def valid(valid_data):
    """模型验证函数"""
    # 初始化验证损失和准确率为0
    loss = 0
    acc = 0

    # 和训练相同, 使用DataLoader获得训练数据生成器
    data = DataLoader(valid_data, batch_size=BATCH_SIZE, collate_fn=generate_batch)
    # 按批次取出数据验证
    for text, cls in data:
        # 验证阶段, 不再求解梯度
        with torch.no_grad():
            # 使用模型获得输出
            output = model(text)
            # 计算损失
            loss = criterion(output, cls)
            # 将损失和准确率加到总损失和准确率中
            loss += loss.item()
            acc += (output.argmax(1) == cls).sum().item()

    # 返回本轮验证的平均损失和平均准确率
    return loss / len(valid_data), acc / len(valid_data)

# 导入时间工具包
import time

# 导入数据随机划分方法工具
from torch.utils.data.dataset import random_split

# 指定训练轮数
N_EPOCHS = 10

# 定义初始的验证损失
min_valid_loss = float('inf')

# 选择损失函数, 这里选择预定义的交叉熵损失函数
criterion = torch.nn.CrossEntropyLoss().to(device)
# 选择随机梯度下降优化器
optimizer = torch.optim.SGD(model.parameters(), lr=4.0)
# 选择优化器步长调节方法StepLR, 用来衰减学习率
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.9)

# 从train_dataset取出0.95作为训练集, 先取其长度
train_len = int(len(train_dataset) * 0.95)

# 然后使用random_split进行乱序划分, 得到对应的训练集和验证集
sub_train_, sub_valid_ = \
    random_split(train_dataset, [train_len, len(train_dataset) - train_len])

# 开始每一轮训练
for epoch in range(N_EPOCHS):
    # 记录概论训练的开始时间
    start_time = time.time()
    # 调用train和valid函数得到训练和验证的平均损失, 平均准确率
    train_loss, train_acc = train(sub_train_)
    valid_loss, valid_acc = valid(sub_valid_)

    # 计算训练和验证的总耗时(秒)
    secs = int(time.time() - start_time)
    # 用分钟和秒表示
    mins = secs / 60
    secs = secs % 60

    # 打印训练和验证耗时,平均损失,平均准确率
    print('Epoch: %d' %(epoch + 1), " | time in %d minutes, %d seconds" %(mins, secs))
    print(f'\tLoss: {train_loss:.4f}(train)\t|\tAcc: {train_acc * 100:.1f}%(train)')
    print(f'\tLoss: {valid_loss:.4f}(valid)\t|\tAcc: {valid_acc * 100:.1f}%(valid)')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/344591
推荐阅读
相关标签
  

闽ICP备14008679号