当前位置:   article > 正文

IBM HR Analytics 员工流失 EDA 和可视化绩效分析_ibm人力资源分析员工流失和绩效

ibm人力资源分析员工流失和绩效

背景

揭示导致员工流失的因素,并探讨重要问题,例如“按工作角色和流失情况显示离家距离的详细信息”或“按教育程度和流失情况比较平均月收入”。这是由 IBM 数据科学家创建的虚构数据集。

  • 教育程度
    1 ‘大专以下’
    2 ‘大专’
    3 ‘学士’
    4 ‘硕士’
    5 ‘博士’

  • 环境满意度
    1 “低”
    2 “中”
    3 “高”
    4 “非常高”

  • 工作投入度
    1 “低”
    2 “中”
    3 “高”
    4 “非常高”

  • 工作满意度
    1 “低”
    2 “中”
    3 “高”
    4 “非常高”

  • 绩效评级
    1 ‘低’
    2 ‘好’
    3 ‘优秀’
    4 ‘杰出’

  • 关系满意度
    1 “低”
    2 “中”
    3 “高”
    4 “非常高”

  • 工作与生活平衡
    1 “差”
    2 “好”
    3 “更好”
    4 “最好”
    文件中列名

Age年龄
Attrition消耗
BusinessTravel商务旅行
DailyRate每日比率
Department部门
DistanceFromHome离家距离
Education教育
EducationField教育领域
EmployeeCount员工帐户
EmployeeNumber员工数量
EnvironmentSatisfaction环境满意度
Gender性别
HourlyRate小时比率
JobInvolvement工作投入
JobLevel工作级别
JobRole工作角色
JobSatisfaction工作满意度
MaritalStatus婚姻状况
MonthlyIncome每月收入
MonthlyRate月费率
Num CompaniesWorked工作的公司数量
Over1818以上
OverTime加班
Percent SalaryHike百分比工资
PerformanceRating绩效评级
RelationshipSatisfaction关系满意度
StandardHours标准工时

导入库

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import plotly.express as px
import seaborn as sns
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
  • 1
  • 2
  • 3
  • 4

输出前五行

df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv')
df.head()
  • 1
  • 2

在这里插入图片描述

df.dtypes
  • 1

Age int64
Attrition object
BusinessTravel object
DailyRate int64
Department object
DistanceFromHome int64
Education int64
EducationField object
EmployeeCount int64
EmployeeNumber int64
EnvironmentSatisfaction int64
Gender object
HourlyRate int64
JobInvolvement int64
JobLevel int64
JobRole object
JobSatisfaction int64
MaritalStatus object
MonthlyIncome int64
MonthlyRate int64
NumCompaniesWorked int64
Over18 object
OverTime object
PercentSalaryHike int64
PerformanceRating int64
RelationshipSatisfaction int64
StandardHours int64
StockOptionLevel int64
TotalWorkingYears int64
TrainingTimesLastYear int64
WorkLifeBalance int64
YearsAtCompany int64
YearsInCurrentRole int64
YearsSinceLastPromotion int64
YearsWithCurrManager int64
dtype: object

数据清洗

检查空值

df.isna().sum()
  • 1

Age 0
Attrition 0
BusinessTravel 0
DailyRate 0
Department 0
DistanceFromHome 0
Education 0
EducationField 0
EmployeeCount 0
EmployeeNumber 0
EnvironmentSatisfaction 0
Gender 0
HourlyRate 0
JobInvolvement 0
JobLevel 0
JobRole 0
JobSatisfaction 0
MaritalStatus 0
MonthlyIncome 0
MonthlyRate 0
NumCompaniesWorked 0
Over18 0
OverTime 0
PercentSalaryHike 0
PerformanceRating 0
RelationshipSatisfaction 0
StandardHours 0
StockOptionLevel 0
TotalWorkingYears 0
TrainingTimesLastYear 0
WorkLifeBalance 0
YearsAtCompany 0
YearsInCurrentRole 0
YearsSinceLastPromotion 0
YearsWithCurrManager 0
dtype: int64

df.describe()
  • 1

在这里插入图片描述

df.Age.unique()
  • 1

在这里插入图片描述
我们可以看到,有些列可以删除,因为它们没有增加任何价值:

a.员工数量

b.员工人数

C.标准工作时间:每个人工作80小时

d.18岁以上:所有工作的人都在18岁以上

删除不必要的列


df= df.drop(['EmployeeCount','EmployeeNumber','Over18','StandardHours'],axis = 1)
  • 1
  • 2

可视化

商务旅行直方图

sns.histplot(data=df, x='BusinessTravel', element='step', color='purple', stat='percent')
  • 1

在这里插入图片描述
我们可以看到大多数工作需要员工出差,但很少。大约20%的工作需要经常出差,10%没有出差。

离家的距离箱形图

sns.boxplot(data=df, y='DistanceFromHome', color='green')
  • 1

在这里插入图片描述
从这个箱线图中,我们可以看到,员工平均要走7公里才能到达办公室,其中75%的员工要走1到14公里才能到达办公室。让我们看看离家的距离和损耗之间是否有任何关系

1.根据百分位数划分数据

cut_labels = ['Near', 'Reasonable', 'Far']
cut_bins = [-1, df['DistanceFromHome'].quantile(0.33), df['DistanceFromHome'].quantile(0.67), df['DistanceFromHome'].max() + 1]
df['DistanceGroup'] = pd.cut(df['DistanceFromHome'], bins=cut_bins, labels=cut_labels)
  • 1
  • 2
  • 3

2.计算每组的退出概率

probabilities = df.groupby('DistanceGroup').apply(lambda group: sum(group['Attrition'] == 'Yes') / len(group)).reset_index()
probabilities.columns = ['DistanceGroup', 'Probability']
  • 1
  • 2

3.绘制这些概率

plt.figure(figsize=(10, 6))
sns.barplot(x='DistanceGroup', y='Probability', data=probabilities, order=cut_labels)
plt.title('Probability of Attrition by Distance Group')
plt.ylabel('Probability of Quitting')
plt.xlabel('Distance from Home Group')
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述
我们可以看到,与住在附近或合理距离的人相比,住得远的人戒烟的概率更高

教育与数字公司的关系


sns.barplot(data=df, y='NumCompaniesWorked', x='Education', palette='Set3')
  • 1
  • 2

在这里插入图片描述
我们可以看到,平均而言,上过高中的人换工作的频率较低。然而,拥有硕士学位的人更容易流失

年龄和月收入散点图


sns.scatterplot(data=df, x='Age', y='MonthlyIncome')
  • 1
  • 2

在这里插入图片描述
从散点图中,我们可以看到,随着人们年龄的增长,高薪的机会越来越多,年长的雇员往往挣得更多,然而,工资差距也在扩大。

sns.scatterplot(data=df, x='Age', y='TotalWorkingYears', hue='Attrition')
  • 1

在这里插入图片描述
从散点图来看,与经验丰富的同行相比,刚开始职业生涯的人通常更容易辞职

按教育领域和工作角色划分的工作满意度

fig = px.bar(df, x='EducationField', y='JobSatisfaction', color='JobRole', barmode='group')
fig.update_layout(
 
xaxis_title='Education Field',
 
yaxis_title='Job Satisfaction',
 
title='Job Satisfaction by Education Field and Job Role')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

相关矩阵的交互式热图


correlation_matrix = df.corr()
fig = px.imshow(correlation_matrix, color_continuous_scale='Viridis', title='Interactive Heatmap of Correlation Matrix')
fig.show()
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号