赞
踩
人工智能课程复习笔记专题
人工智能绪论
人工智能之知识表示
人工智能之搜索方法
人工智能之经典逻辑推理
人工智能之专家系统
人工智能之不确定推理方法
人工智能之机器学习
根据问题实际情况,不断寻找可利用的知识,构造一条代价最小的推理路线,使问题得以解决的过程称为搜索。
搜索类型
按是否使用启发式信息:盲目搜索、启发式搜索
按问题的表示方式:状态空间搜索、与或树搜索
状态空间表示法用“状态”和“算符”来表示问题
状态空间图:状态空间的图表示,节点为状态、有向边为算符
解:初始状态到目标状态所使用的算符序列
例子:二阶“梵塔”问题状态空间方法
1)状态的表示
柱的编号用i,j来代表 (i,j)表示问题的状态其中: i代表A所在的柱子
j 代表B所在的柱子
状态集合 (9种可能的状态)s0=(1,1), s1=(1,2), s2=(1,3)s3=(2,1), s4=(2,2), s5=(2,3)s6=(3,1), s7=(3,2), s8=(3,3)
2)操作(算符)的定义
定义操作A(i,j)表示把A从i移到j;B(i,j)表示把B从i移到j。
操作集合(共12个算符):
A(1,2),A(1,3),A(2,1),A(2,3),A(3,1),A(3,2)
B(1,2),B(1,3),B(2,1),B(2,3),B(3,1),B(3,2)
3)状态空间图
与或树表示方法也称问题归约方法。
把复杂问题转换为若干个需要处理的子问题后再加以分别求解的策略,可以递归的进行,直到问题转换为本原问题的集合。
分解
将问题归约为一组子问题,当子问题都有解,原问题才有解。
即子问题的“与”同原问题等价
等价变换
将原问题归约为一组子问题,当子问题其中一个有解,原问题就有解。
即子问题的“或”同原问题等价
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。