当前位置:   article > 正文

LeNet、AlexNet、VGG、GoogleNet、ResNet经典网络总结_lenet[75]、alexnet[55]、vggnet[76]和googlenet

lenet[75]、alexnet[55]、vggnet[76]和googlenet

LeNet

LeNet是最早的卷积神经网络之一。1998年,Yan LeCun第一次将LeNet卷积神经网络应用到图像分类上,在手写数字识别任务中取得了巨大成功。LeNet通过连续使用卷积和池化层的组合提取图像特征,其架构如所图示,这里展示的是作者论文中的LeNet-5模型:

虽然LeNet网络模型对手写数字的识别取得的效果很明显,因为手写数字的输入图片尺寸仅为28x28但是当输入图片的尺寸过大时(224x224),它的效果就不尽人意了。

AlexNet

AlexNet与LeNet相比,具有更深的网络结构,包含5层卷积和3层全连接,同时使用了如下三种方法改进模型的训练过程:

  1. 数据增广:深度学习中常用的一种处理方式,通过对训练随机加一些变化,比如平移、缩放、裁剪、旋转、翻转或者增减亮度等,产生一系列跟原始图片相似但又不完全相同的样本,从而扩大训练数据集。通过这种方式,可以随机改变训练样本,避免模型过度依赖于某些属性,能从一定程度上抑制过拟合。
  2. 使用Dropout抑制过拟合(通过在每个全连接层后面加上Dropout层减少了模型的过拟合问题。Dropout层以一定的概率随机地关闭当前层中神经元激活值)
  3. 使用ReLU激活函数减少梯度消失现象(提出了ReLU激活函数,传统采用的是Tanh或Sigmoid激活函数)

网络结构如图:

VGG

VGG通过使用一系列大小为3x3的小尺寸卷积核和pooling层构造深度卷积神经网络,并取得了较好的效果。VGG模型因为结构简单、应用性极强而广受研究者欢迎,尤其是它的网络结构设计方法,为构建深度神经网络提供了方向。

VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,5x5)。对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。多次重复使用同一大小的卷积核来提取更复杂和更具有表达性的特征。这种块结构( blocks/modules)在VGG之后被广泛采用。(基本上就是通过小卷积核解决了如何塑造更深网络)

下图是VGG-16的网络结构示意图,有13层卷积和3层全连接层。VGG网络的设计严格使用3×3的卷积层和池化层来提取特征,并在网络的最后面使用三层全连接层,将最后一层全连接层的输出作为分类的预测。 在VGG中每层卷积将使用ReLU作为激活函数,在全连接层之后添加dropout来抑制过拟合。

GoogLeNet/Inception

1. 为什么要提出Inception

尽管VGG可以在ImageNet上表现很好,但是将其部署在一个适度大小的GPU上是困难的,因为需要VGG在内存和时间上的计算要求很高。由于卷积层的通道数过大,VGG并不高效。比如,一个3x3的卷积核,如果其输入和输出的通道数均为512,那么需要的计算量为9x512x512。

在卷积操作中,输出特征图上某一个位置,其是与所有的输入特征图是相连的,这是一种密集连接结构。GoogLeNet基于这样的理念:在深度网路中大部分的激活值是不必要的(为0),或者由于相关性是冗余。因此,最高效的深度网路架构应该是激活值之间是稀疏连接的,这意味着512个输出特征图是没有必要与所有的512输入特征图相连。存在一些技术可以对网络进行剪枝来得到稀疏权重或者连接。但是在实现上,全连接变成稀疏连接后实际计算量并不会有质的提升,因为大部分硬件是针对密集矩阵计算优化的,稀疏矩阵虽然数据量少,但是计算所消耗的时间却很难减少。在这种需求和形势下,Google研究人员提出了Inception的方法。

2. 什么是Inception

Inception就是把多个卷积或池化操作,放在一起组装成一个网络模块,设计神经网络时以模块为单位去组装整个网络结构。模块如下图所示

在未使用这种方式的网络里,我们一层往往只使用一种操作,比如卷积或者池化,而且卷积操作的卷积核尺寸也是固定大小的。但是,在实际情况下,在不同尺度的图片里,需要不同大小的卷积核,这样才能使性能最好,或者或,对于同一张图片,不同尺寸的卷积核的表现效果是不一样的,因为他们的感受野不同。所以,我们希望让网络自己去选择,Inception便能够满足这样的需求,一个Inception模块中并列提供多种卷积核的操作,网络在训练的过程中通过调节参数自己去选择使用,同时,由于网络中都需要池化操作,所以此处也把池化层并列加入网络中。

3.实际中需要什么样的Inception

我们在上面提供了一种Inception的结构,但是这个结构存在很多问题,是不能够直接使用的。首要问题就是参数太多,导致特征图厚度太大。为了解决这个问题,作者在其中加入了1X1的卷积核,改进后的Inception结构如下图:

这样做有两个好处,首先是大大减少了参数量,其次,增加的1X1卷积后面也会跟着有非线性激励,这样同时也能够提升网络的表达能力。

总结:

1)GoogLeNet采用了模块化的结构(Inception结构),方便增添和修改;

2)网络最后采用了average pooling(平均池化)来代替全连接层,该想法来自NIN(Network in Network),事实证明这样可以将准确率提高0.6%。

3)虽然移除了全连接,但是网络中依然使用了Dropout ;

4)为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度(辅助分类器)

对于前三点都很好理解,下面我们重点看一下第4点。这里的辅助分类器只是在训练时使用,在正常预测时会被去掉。辅助分类器促进了更稳定的学习和更好的收敛,往往在接近训练结束时,辅助分支网络开始超越没有任何分支的网络的准确性,达到了更高的水平。

ResNet

从前面可以看到,随着网络深度增加,网络的准确度应该同步增加,当然要注意过拟合问题。但是网络深度增加的一个问题在于这些增加的层是参数更新的信号,因为梯度是从后向前传播的,增加网络深度后,比较靠前的层梯度会很小。这意味着这些层基本上学习停滞了,这就是梯度消失问题。深度网络的第二个问题在于训练,当网络更深时意味着参数空间更大,优化问题变得更难,因此简单地去增加网络深度反而出现更高的训练误差。残差网络ResNet设计一种残差模块让我们可以训练更深的网络。

与GoogLeNet类似,ResNet也最后使用了全局均值池化层。利用残差模块,可以训练152层的残差网络。其准确度比VGG和GoogLeNet要高,但是计算效率也比VGG高。152层的ResNet其top-5准确度为95.51%。

ResNet主要使用3x3卷积,这点与VGG类似。在VGG基础上,短路连接插入进入形成残差网络。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/526432
推荐阅读
相关标签
  

闽ICP备14008679号