当前位置:   article > 正文

第四章 numpy之数学函数、逻辑函数+练习题_operands could not be broadcast together with shap

operands could not be broadcast together with shapes (6,) (5,) ()

一、向量化和广播

向量化和广播这两个概念是 numpy 内部实现的基础。有了向量化,编写代码时无需使用显式循环。这些循环实际上不能省略,只不过是在内部实现,被代码中的其他结构代替。向量化的应用使得代码更简洁,可读性更强,也可以说使用了向量化方法的代码看上去更“Pythonic”。

广播(Broadcasting)机制描述了 numpy 如何在算术运算期间处理具有不同形状的数组,让较小的数组在较大的数组上“广播”,以便它们具有兼容的形状。并不是所有的维度都要彼此兼容才符合广播机制的要求,但它们必须满足一定的条件。

若两个数组的各维度兼容,也就是两个数组的每一维等长,或其中一个数组为 一维,那么广播机制就适用。如果这两个条件不满足,numpy就会抛出异常,说两个数组不兼容。

总结来说,广播的规则有三个:

  • 如果两个数组的维度数dim不相同,那么小维度数组的形状将会在左边补1。
  • 如果shape维度不匹配,但是有维度是1,那么可以扩展维度是1的维度匹配另一个数组;
  • 如果shape维度不匹配,但是没有任何一个维度是1,则匹配引发错误;

参考文章:https://www.cnblogs.com/jiaxin359/p/9021726.html

【例】二维数组加一维数组

import numpy as np

x = np.arange(4)# [0 1 2 3]
y = np.ones((3, 4))
# [[1. 1. 1. 1.]
#  [1. 1. 1. 1.]
#  [1. 1. 1. 1.]]
print(x.shape)  # (4,)
print(y.shape)  # (3, 4)
print((x + y).shape)  # (3, 4)
print(x + y)
# [[1. 2. 3. 4.]
#  [1. 2. 3. 4.]
#  [1. 2. 3. 4.]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

【例】两个数组均需要广播

import numpy as np

x = np.arange(4).reshape(4, 1)
# [[0]
#  [1]
#  [2]
#  [3]]

y = np.ones(5)
# [1. 1. 1. 1. 1.]

print(x.shape)  # (4, 1)
print(y.shape)  # (5,)

print((x + y).shape)  # (4, 5)
print(x + y)
# [[1. 1. 1. 1. 1.]
#  [2. 2. 2. 2. 2.]
#  [3. 3. 3. 3. 3.]
#  [4. 4. 4. 4. 4.]]

x = np.array([0.0, 10.0, 20.0, 30.0])
y = np.array([1.0, 2.0, 3.0])
z = x[:, np.newaxis] + y
print(z)
# [[ 1.  2.  3.]
#  [11. 12. 13.]
#  [21. 22. 23.]
#  [31. 32. 33.]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

【例】不匹配报错的例子

import numpy as np

x = np.arange(4)
# [0 1 2 3]
y = np.ones(5)
# [1. 1. 1. 1. 1.]
print(y)
print(x.shape)  # (4,)
print(y.shape)  # (5,)

print(x + y)
# ValueError: operands could not be broadcast together with shapes (4,) (5,) 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

二、数学函数

1.算数运算

1.1numpy.add

1.2numpy.subtract

1.3numpy.multiply

1.4numpy.divide

1.5numpy.floor_divide

1.6numpy.power

  • numpy.add(x1, x2, *args, **kwargs) 逐个元素添加参数。
  • numpy.subtract(x1, x2, *args, **kwargs) 逐个元素地减去参数。
  • numpy.multiply(x1, x2, *args, **kwargs) 将参数逐元素相乘。
  • numpy.divide(x1, x2, *args, **kwargs) 返回按元素划分的输入的真实除法。
  • numpy.floor_divide(x1, x2, *args, **kwargs) 返回小于或等于输入的除法的最大整数
  • numpy.power(x1, x2, *args, **kwargs) 第一个数组元素在元素方面从第二个数组提升为幂。

在 numpy 中对以上函数进行了运算符的重载,且运算符为 元素级。也就是说,它们只用于位置相同的元素之间,所得到的运算结果组成一个新的数组。

【例】注意 numpy 的广播规则。

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = x + 1
print(y)
print(np.add(x, 1))
# [2 3 4 5 6 7 8 9]

y = x - 1
print(y)
print(np.subtract(x, 1))
# [0 1 2 3 4 5 6 7]

y = x * 2
print(y)
print(np.multiply(x, 2))
# [ 2  4  6  8 10 12 14 16]

y = x / 2
print(y)
print(np.divide(x, 2))
# [0.5 1.  1.5 2.  2.5 3.  3.5 4. ]

y = x // 2
print(y)
print(np.floor_divide(x, 2))
# [0 1 1 2 2 3 3 4]

y = x ** 2
print(y)
print(np.power(x, 2))
# [ 1  4  9 16 25 36 49 64]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

【例】注意 numpy 的广播规则。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = x + 1
print(y)
print(np.add(x, 1))
# [[12 13 14 15 16]
#  [17 18 19 20 21]
#  [22 23 24 25 26]
#  [27 28 29 30 31]
#  [32 33 34 35 36]]

y = x - 1
print(y)
print(np.subtract(x, 1))
# [[10 11 12 13 14]
#  [15 16 17 18 19]
#  [20 21 22 23 24]
#  [25 26 27 28 29]
#  [30 31 32 33 34]]

y = x * 2
print(y)
print(np.multiply(x, 2))
# [[22 24 26 28 30]
#  [32 34 36 38 40]
#  [42 44 46 48 50]
#  [52 54 56 58 60]
#  [62 64 66 68 70]]

y = x / 2
print(y)
print(np.divide(x, 2))
# [[ 5.5  6.   6.5  7.   7.5]
#  [ 8.   8.5  9.   9.5 10. ]
#  [10.5 11.  11.5 12.  12.5]
#  [13.  13.5 14.  14.5 15. ]
#  [15.5 16.  16.5 17.  17.5]]

y = x // 2
print(y)
print(np.floor_divide(x, 2))
# [[ 5  6  6  7  7]
#  [ 8  8  9  9 10]
#  [10 11 11 12 12]
#  [13 13 14 14 15]
#  [15 16 16 17 17]]

y = x ** 2
print(y)
print(np.power(x, 2))
# [[ 121  144  169  196  225]
#  [ 256  289  324  361  400]
#  [ 441  484  529  576  625]
#  [ 676  729  784  841  900]
#  [ 961 1024 1089 1156 1225]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60

【例】注意 numpy 的广播规则。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])

y = np.arange(1, 6)
print(y)
# [1 2 3 4 5]

z = x + y
print(z)
print(np.add(x, y))
# [[12 14 16 18 20]
#  [17 19 21 23 25]
#  [22 24 26 28 30]
#  [27 29 31 33 35]
#  [32 34 36 38 40]]

z = x - y
print(z)
print(np.subtract(x, y))
# [[10 10 10 10 10]
#  [15 15 15 15 15]
#  [20 20 20 20 20]
#  [25 25 25 25 25]
#  [30 30 30 30 30]]

z = x * y
print(z)
print(np.multiply(x, y))
# [[ 11  24  39  56  75]
#  [ 16  34  54  76 100]
#  [ 21  44  69  96 125]
#  [ 26  54  84 116 150]
#  [ 31  64  99 136 175]]

z = x / y
print(z)
print(np.divide(x, y))
# [[11.          6.          4.33333333  3.5         3.        ]
#  [16.          8.5         6.          4.75        4.        ]
#  [21.         11.          7.66666667  6.          5.        ]
#  [26.         13.5         9.33333333  7.25        6.        ]
#  [31.         16.         11.          8.5         7.        ]]

z = x // y
print(z)
print(np.floor_divide(x, y))
# [[11  6  4  3  3]
#  [16  8  6  4  4]
#  [21 11  7  6  5]
#  [26 13  9  7  6]
#  [31 16 11  8  7]]

z = x ** np.full([1, 5], 2)
print(z)
print(np.power(x, np.full([5, 5], 2)))
# [[ 121  144  169  196  225]
#  [ 256  289  324  361  400]
#  [ 441  484  529  576  625]
#  [ 676  729  784  841  900]
#  [ 961 1024 1089 1156 1225]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65

【例】

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])

y = np.arange(1, 26).reshape([5, 5])
print(y)
# [[ 1  2  3  4  5]
#  [ 6  7  8  9 10]
#  [11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]]

z = x + y
print(z)
print(np.add(x, y))
# [[12 14 16 18 20]
#  [22 24 26 28 30]
#  [32 34 36 38 40]
#  [42 44 46 48 50]
#  [52 54 56 58 60]]

z = x - y
print(z)
print(np.subtract(x, y))
# [[10 10 10 10 10]
#  [10 10 10 10 10]
#  [10 10 10 10 10]
#  [10 10 10 10 10]
#  [10 10 10 10 10]]

z = x * y
print(z)
print(np.multiply(x, y))
# [[ 11  24  39  56  75]
#  [ 96 119 144 171 200]
#  [231 264 299 336 375]
#  [416 459 504 551 600]
#  [651 704 759 816 875]]

z = x / y
print(z)
print(np.divide(x, y))
# [[11.          6.          4.33333333  3.5         3.        ]
#  [ 2.66666667  2.42857143  2.25        2.11111111  2.        ]
#  [ 1.90909091  1.83333333  1.76923077  1.71428571  1.66666667]
#  [ 1.625       1.58823529  1.55555556  1.52631579  1.5       ]
#  [ 1.47619048  1.45454545  1.43478261  1.41666667  1.4       ]]

z = x // y
print(z)
print(np.floor_divide(x, y))
# [[11  6  4  3  3]
#  [ 2  2  2  2  2]
#  [ 1  1  1  1  1]
#  [ 1  1  1  1  1]
#  [ 1  1  1  1  1]]

z = x ** np.full([5, 5], 2)
print(z)
print(np.power(x, np.full([5, 5], 2)))
# [[ 121  144  169  196  225]
#  [ 256  289  324  361  400]
#  [ 441  484  529  576  625]
#  [ 676  729  784  841  900]
#  [ 961 1024 1089 1156 1225]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69

1.7numpy.sqrt

1.8numpy.square

  • numpy.sqrt(x, *args, **kwargs) Return the non-negative square-root of an array, element-wise.
  • numpy.square(x, *args, **kwargs) Return the element-wise square of the input.

【例】

import numpy as np

x = np.arange(1, 5)
print(x)  # [1 2 3 4]

y = np.sqrt(x)
print(y)
# [1.         1.41421356 1.73205081 2.        ]
print(np.power(x, 0.5))
# [1.         1.41421356 1.73205081 2.        ]

y = np.square(x)
print(y)
# [ 1  4  9 16]
print(np.power(x, 2))
# [ 1  4  9 16]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

2.三角函数

2.1numpy.sin

2.2numpy.cos

2.3numpy.tan

2.4numpy.arcsin

2.5numpy.arccos

2.6numpy.arctan

  • numpy.sin(x, *args, **kwargs) Trigonometric sine, element-wise.
  • numpy.cos(x, *args, **kwargs) Cosine element-wise.
  • numpy.tan(x, *args, **kwargs) Compute tangent element-wise.
  • numpy.arcsin(x, *args, **kwargs) Inverse sine, element-wise.
  • numpy.arccos(x, *args, **kwargs) Trigonometric inverse cosine, element-wise.
  • numpy.arctan(x, *args, **kwargs) Trigonometric inverse tangent, element-wise.

通用函数(universal function)通常叫作ufunc,它对数组中的各个元素逐一进行操作。这表明,通用函数分别处理输入数组的每个元素,生成的结果组成一个新的输出数组。输出数组的大小跟输入数组相同。

三角函数等很多数学运算符合通用函数的定义,例如,计算平方根的sqrt()函数、用来取对数的log()函数和求正弦值的sin()函数。

【例】

import numpy as np

x = np.linspace(start=0, stop=np.pi / 2, num=10)
print(x)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]

y = np.sin(x)
print(y)
# [0.         0.17364818 0.34202014 0.5        0.64278761 0.76604444
#  0.8660254  0.93969262 0.98480775 1.        ]

z = np.arcsin(y)
print(z)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]

y = np.cos(x)
print(y)
# [1.00000000e+00 9.84807753e-01 9.39692621e-01 8.66025404e-01
#  7.66044443e-01 6.42787610e-01 5.00000000e-01 3.42020143e-01
#  1.73648178e-01 6.12323400e-17]

z = np.arccos(y)
print(z)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]

y = np.tan(x)
print(y)
# [0.00000000e+00 1.76326981e-01 3.63970234e-01 5.77350269e-01
#  8.39099631e-01 1.19175359e+00 1.73205081e+00 2.74747742e+00
#  5.67128182e+00 1.63312394e+16]

z = np.arctan(y)
print(z)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

3.指数和对数

3.1numpy.exp

3.3numpy.log

3.4numpy.exp2

3.4numpy.log2

3.5numpy.log10

  • numpy.exp(x, *args, **kwargs) 计算输入数组中所有元素的指数。
  • numpy.log(x, *args, **kwargs) 自然对数,逐元素。
  • numpy.exp2(x, *args, **kwargs) Calculate 2**p for all p in the input array.
  • numpy.log2(x, *args, **kwargs) x的以2为底的对数。
  • numpy.log10(x, *args, **kwargs) 以元素为单位返回输入数组的以10为底的对数。

【例】自然对数log是指数函数的倒数,因此log(exp(x))= x。 自然对数是底数为e的对数。

import numpy as np

x = np.arange(1, 5)
print(x)
# [1 2 3 4]
y = np.exp(x)
print(y)
# [ 2.71828183  7.3890561  20.08553692 54.59815003]
z = np.log(y)
print(z)
# [1. 2. 3. 4.]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

4.加法函数、乘法函数

4.1numpy.sum

  • numpy.sum(a[, axis=None, dtype=None, out=None, …])给定轴上的数组元素的总和。

通过不同的 axis,numpy 会沿着不同的方向进行操作:如果不设置,那么对所有的元素操作;如果axis=0,则沿着纵轴进行操作;axis=1,则沿着横轴进行操作。但这只是简单的二位数组,如果是多维的呢?可以总结为一句话:设axis=i,则 numpy 沿着第i个下标变化的方向进行操作。

4.2numpy.cumsum

  • numpy.cumsum(a, axis=None, dtype=None, out=None) 返回沿给定轴的元素的累加和。

聚合函数 是指对一组值(比如一个数组)进行操作,返回一个单一值作为结果的函数。因而,求数组所有元素之和的函数就是聚合函数。ndarray类实现了多个这样的函数。

【例】返回给定轴上的数组元素的总和。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.sum(x) # 所有+
print(y)  # 575

y = np.sum(x, axis=0) # 沿着列+
print(y)  # [105 110 115 120 125]

y = np.sum(x, axis=1) # 沿着行+
print(y)  # [ 65  90 115 140 165]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

【例】返回给定轴上的数组元素的累加和。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.cumsum(x)
print(y)
# [ 11  23  36  50  65  81  98 116 135 155 176 198 221 245 270 296 323 351
#  380 410 441 473 506 540 575]

y = np.cumsum(x, axis=0)# 沿着列+
print(y)
# [[ 11  12  13  14  15]
#  [ 27  29  31  33  35]
#  [ 48  51  54  57  60]
#  [ 74  78  82  86  90]
#  [105 110 115 120 125]]

y = np.cumsum(x, axis=1)# 沿着行+
print(y)
# [[ 11  23  36  50  65]
#  [ 16  33  51  70  90]
#  [ 21  43  66  90 115]
#  [ 26  53  81 110 140]
#  [ 31  63  96 130 165]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

4.3numpy.prod 乘积

  • numpy.prod(a[, axis=None, dtype=None, out=None, …])返回给定轴上数组元素的乘积。

4.4numpy.cumprod 累乘

  • numpy.cumprod(a, axis=None, dtype=None, out=None) 返回沿给定轴的元素的累积乘积。

【例】返回给定轴上数组元素的乘积。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.prod(x)
print(y)  # 788529152

y = np.prod(x, axis=0)
print(y)
# [2978976 3877632 4972968 6294624 7875000]

y = np.prod(x, axis=1)
print(y)
# [  360360  1860480  6375600 17100720 38955840]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

【例】返回给定轴上数组元素的累乘。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.cumprod(x)
print(y)
# [         11         132        1716       24024      360360     5765760
#     98017920  1764322560  -837609728   427674624   391232512    17180672
#    395155456   893796352   870072320  1147043840   905412608  -418250752
#    755630080  1194065920 -1638662144  -897581056   444596224 -2063597568
#    788529152]

y = np.cumprod(x, axis=0)
print(y)
# [[     11      12      13      14      15]
#  [    176     204     234     266     300]
#  [   3696    4488    5382    6384    7500]
#  [  96096  121176  150696  185136  225000]
#  [2978976 3877632 4972968 6294624 7875000]]

y = np.cumprod(x, axis=1)
print(y)
# [[      11      132     1716    24024   360360]
#  [      16      272     4896    93024  1860480]
#  [      21      462    10626   255024  6375600]
#  [      26      702    19656   570024 17100720]
#  [      31      992    32736  1113024 38955840]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

4.5numpy.diff 差值

  • numpy.diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue) 计算沿给定的第n个离散差
    • a:输入矩阵
    • n:可选,代表要执行几次差值
    • axis:默认是最后一个

The first difference is given by out[i] = a[i+1] - a[i] along the given axis, higher differences are calculated by using diff recursively.

【例】沿着指定轴计算第N维的离散差值。

import numpy as np

A = np.arange(2, 14).reshape((3, 4))
# [[ 2  3  4  5]
#  [ 6  7  8  9]
#  [10 11 12 13]]

A[1, 1] = 8
print(A)
# [[ 2  3  4  5]
#  [ 6  8  8  9]
#  [10 11 12 13]]
print(np.diff(A))
# [[1 1 1]
#  [2 0 1]
#  [1 1 1]]
print(np.diff(A, axis=0))
# [[4 5 4 4]
#  [4 3 4 4]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

5.四舍五入

5.1numpy.around 舍入

  • numpy.around(a, decimals=0, out=None) 将数组舍入到给定的小数位数

【例】

import numpy as np

x = np.random.rand(3, 3) * 10
print(x)
# [[6.59144457 3.78566113 8.15321227]
#  [1.68241475 3.78753332 7.68886328]
#  [2.84255822 9.58106727 7.86678037]]

y = np.around(x)
print(y)
# [[ 7.  4.  8.]
#  [ 2.  4.  8.]
#  [ 3. 10.  8.]]

y = np.around(x, decimals=2)
print(y)
# [[6.59 3.79 8.15]
#  [1.68 3.79 7.69]
#  [2.84 9.58 7.87]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

5.2numpy.ceil 上限

5.3numpy.floor 下限

  • numpy.ceil(x, *args, **kwargs) 以元素为单位返回输入的上限。
  • numpy.floor(x, *args, **kwargs) 以元素为单位返回输入的下限。

【例】

import numpy as np

x = np.random.rand(3, 3) * 10
print(x)
# [[0.67847795 1.33073923 4.53920122]
#  [7.55724676 5.88854047 2.65502046]
#  [8.67640444 8.80110812 5.97528726]]

y = np.ceil(x)
print(y)
# [[1. 2. 5.]
#  [8. 6. 3.]
#  [9. 9. 6.]]

y = np.floor(x)
print(y)
# [[0. 1. 4.]
#  [7. 5. 2.]
#  [8. 8. 5.]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

6.杂项

6.1numpy.clip 裁剪

  • numpy.clip(a, a_min, a_max, out=None, **kwargs): 裁剪(限制)数组中的值。

例如,如果指定间隔[[0,1]`,则小于0的值将变为0,而大于1的值将变为1。

【例】裁剪(限制)数组中的值。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = np.clip(x, a_min=20, a_max=30)
print(y)
# [[20 20 20 20 20]
#  [20 20 20 20 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [30 30 30 30 30]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

6.2numpy.absolute 绝对值

6.3numpy.abs

  • numpy.absolute(x, *args, **kwargs) 按元素计算绝对值。
  • numpy.abs(x, *args, **kwargs) 简写。

【例】

import numpy as np

x = np.arange(-5, 5)
print(x)
# [-5 -4 -3 -2 -1  0  1  2  3  4]

y = np.abs(x)
print(y)
# [5 4 3 2 1 0 1 2 3 4]

y = np.absolute(x)
print(y)
# [5 4 3 2 1 0 1 2 3 4]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

6.4numpy.sign 返回数字符号的逐元素指示

  • numpy.sign(x, *args, **kwargs)

【例】

x = np.arange(-5, 5)
print(x)
#[-5 -4 -3 -2 -1  0  1  2  3  4]
print(np.sign(x))
#[-1 -1 -1 -1 -1  0  1  1  1  1]
  • 1
  • 2
  • 3
  • 4
  • 5

参考文献

  • https://mp.weixin.qq.com/s/RWsGvvmw4ptf7d8zPIDEJw
  • https://blog.csdn.net/hanshuobest/article/details/78558826?utm_medium=distribute.pc_relevant.none-task-blog-baidujs-1

二、逻辑函数

1.真值测试

1.1numpy.all

1.2numpy.any

  • numpy.all(a, axis=None, out=None, keepdims=np._NoValue) 测试沿给定轴的所有数组元素是否求值为True。
  • numpy.any(a, axis=None, out=None, keepdims=np._NoValue) 测试沿给定轴的任何数组元素的求值是否为True。

【例】

import numpy as np

a = np.array([0, 4, 5])
b = np.copy(a)
print(np.all(a == b))  # True
print(np.any(a == b))  # True

b[0] = 1
print(np.all(a == b))  # False
print(np.any(a == b))  # True

print(np.all([1.0, np.nan]))  # True
print(np.any([1.0, np.nan]))  # True

a = np.eye(3)
print(np.all(a, axis=0))  # [False False False]
print(np.any(a, axis=0))  # [ True  True  True]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

2.数组内容

2.1numpy.isnan

  • numpy.isnan(x, *args, **kwargs) 对NaN逐个元素进行测试,然后将结果作为布尔数组返回。

【例】

import numpy as np
a=np.array([1,2,np.nan])
print(np.isnan(a))
  • 1
  • 2
  • 3
[False False  True]
  • 1

3.逻辑运算

3.1numpy.logical_not

3.2numpy.logical_and

3.3numpy.logical_or

3.4numpy.logical_xor

  • numpy.logical_not(x, *args, **kwargs)计算非x元素的真值。
  • numpy.logical_and(x1, x2, *args, **kwargs)按元素计算x1和x2的真值。
  • numpy.logical_or(x1, x2, *args, **kwargs)按元素计算x1或x2的真值。
  • numpy.logical_xor(x1, x2, *args, **kwargs)返回X1和X2异或逻辑后的布尔值。

【例】计算非x元素的真值。

import numpy as np

print(np.logical_not(3))  
# False
print(np.logical_not([True, False, 0, 1]))
# [False  True  True False]

x = np.arange(5)
print(np.logical_not(x < 3))
# [False False False  True  True]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

【例】计算x1 AND x2元素的真值。

print(np.logical_and(True, False))  
# False
print(np.logical_and([True, False], [True, False]))
# [ True False]
print(np.logical_and(x > 1, x < 4))
# [False False  True  True False]

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

【例】逐元素计算x1 OR x2的真值。

print(np.logical_or(True, False))
# True
print(np.logical_or([True, False], [False, False]))
# [ True False]
print(np.logical_or(x < 1, x > 3))
# [ True False False False  True]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

【例】计算x1 XOR x2的真值,按元素计算。

print(np.logical_xor(True, False))
# True
print(np.logical_xor([True, True, False, False], [True, False, True, False]))
# [False  True  True False]
print(np.logical_xor(x < 1, x > 3))
# [ True False False False  True]
print(np.logical_xor(0, np.eye(2)))
# [[ True False]
#  [False  True]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

4.对照

4.1numpy.greater

4.2numpy.greater_equal

4.3numpy.equal

4.4numpy.not_equal

4.5numpy.less

4.6numpy.less_equal

  • numpy.greater(x1, x2, *args, **kwargs) 逐元素返回(x1> x2)的真值。
  • numpy.greater_equal(x1, x2, *args, **kwargs) 逐元素返回(x1> = x2)的真值。
  • numpy.equal(x1, x2, *args, **kwargs) 按元素返回(x1 == x2)。
  • numpy.not_equal(x1, x2, *args, **kwargs) 按元素返回(x1!= x2)。
  • numpy.less(x1, x2, *args, **kwargs) 按元素返回(x1 <x2)的真值。
  • numpy.less_equal(x1, x2, *args, **kwargs) 逐元素返回(x1 = <x2)的真值。

【例】numpy对以上对照函数进行了运算符的重载。

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])

y = x > 2
print(y)
print(np.greater(x, 2))
# [False False  True  True  True  True  True  True]

y = x >= 2
print(y)
print(np.greater_equal(x, 2))
# [False  True  True  True  True  True  True  True]

y = x == 2
print(y)
print(np.equal(x, 2))
# [False  True False False False False False False]

y = x != 2
print(y)
print(np.not_equal(x, 2))
# [ True False  True  True  True  True  True  True]

y = x < 2
print(y)
print(np.less(x, 2))
# [ True False False False False False False False]

y = x <= 2
print(y)
print(np.less_equal(x, 2))
# [ True  True False False False False False False]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

【例】

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])
y = x > 20
print(y)
print(np.greater(x, 20))
# [[False False False False False]
#  [False False False False False]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]]

y = x >= 20
print(y)
print(np.greater_equal(x, 20))
# [[False False False False False]
#  [False False False False  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]]

y = x == 20
print(y)
print(np.equal(x, 20))
# [[False False False False False]
#  [False False False False  True]
#  [False False False False False]
#  [False False False False False]
#  [False False False False False]]

y = x != 20
print(y)
print(np.not_equal(x, 20))
# [[ True  True  True  True  True]
#  [ True  True  True  True False]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]]


y = x < 20
print(y)
print(np.less(x, 20))
# [[ True  True  True  True  True]
#  [ True  True  True  True False]
#  [False False False False False]
#  [False False False False False]
#  [False False False False False]]

y = x <= 20
print(y)
print(np.less_equal(x, 20))
# [[ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [False False False False False]
#  [False False False False False]
#  [False False False False False]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

【例】

import numpy as np

np.random.seed(20200611)
x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])

y = np.random.randint(10, 40, [5, 5])
print(y)
# [[32 28 31 33 37]
#  [23 37 37 30 29]
#  [32 24 10 33 15]
#  [27 17 10 36 16]
#  [25 32 23 39 34]]

z = x > y
print(z)
print(np.greater(x, y))
# [[False False False False False]
#  [False False False False False]
#  [False False  True False  True]
#  [False  True  True False  True]
#  [ True False  True False  True]]

z = x >= y
print(z)
print(np.greater_equal(x, y))
# [[False False False False False]
#  [False False False False False]
#  [False False  True False  True]
#  [False  True  True False  True]
#  [ True  True  True False  True]]

z = x == y
print(z)
print(np.equal(x, y))
# [[False False False False False]
#  [False False False False False]
#  [False False False False False]
#  [False False False False False]
#  [False  True False False False]]

z = x != y
print(z)
print(np.not_equal(x, y))
# [[ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True False  True  True  True]]

z = x < y
print(z)
print(np.less(x, y))
# [[ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True False  True False]
#  [ True False False  True False]
#  [False False False  True False]]

z = x <= y
print(z)
print(np.less_equal(x, y))
# [[ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True False  True False]
#  [ True False False  True False]
#  [False  True False  True False]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70

【例】注意 numpy 的广播规则。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28, 29, 30],
              [31, 32, 33, 34, 35]])

np.random.seed(20200611)
y = np.random.randint(10, 50, 5)

print(y)
# [32 37 30 24 10]

z = x > y
print(z)
print(np.greater(x, y))
# [[False False False False  True]
#  [False False False False  True]
#  [False False False False  True]
#  [False False False  True  True]
#  [False False  True  True  True]]

z = x >= y
print(z)
print(np.greater_equal(x, y))
# [[False False False False  True]
#  [False False False False  True]
#  [False False False  True  True]
#  [False False False  True  True]
#  [False False  True  True  True]]

z = x == y
print(z)
print(np.equal(x, y))
# [[False False False False False]
#  [False False False False False]
#  [False False False  True False]
#  [False False False False False]
#  [False False False False False]]

z = x != y
print(z)
print(np.not_equal(x, y))
# [[ True  True  True  True  True]
#  [ True  True  True  True  True]
#  [ True  True  True False  True]
#  [ True  True  True  True  True]
#  [ True  True  True  True  True]]

z = x < y
print(z)
print(np.less(x, y))
# [[ True  True  True  True False]
#  [ True  True  True  True False]
#  [ True  True  True False False]
#  [ True  True  True False False]
#  [ True  True False False False]]

z = x <= y
print(z)
print(np.less_equal(x, y))
# [[ True  True  True  True False]
#  [ True  True  True  True False]
#  [ True  True  True  True False]
#  [ True  True  True False False]
#  [ True  True False False False]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67

4.6numpy.isclose

4.7numpy.allclose

  • numpy.isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False) 返回一个布尔数组,其中两个数组在公差范围内在元素上相等。
  • numpy.allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False) 如果两个数组在公差范围内按元素方式相等,则返回True。

numpy.allclose() 等价于 numpy.all(isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan))

公差值是正的,通常很小。 将相对差异(rtol * abs(b))和绝对差异atol相加,以与ab之间的绝对差异进行比较。

判断是否为True的计算依据:

np.absolute(a - b) <= (atol + rtol * absolute(b))

- atol:float,绝对公差。
- rtol:float,相对公差。
  • 1
  • 2
  • 3
  • 4

如果NaN位于同一位置并且equal_nan = True,则将它们视为相等。 如果两个数组中的inf位于相同位置且具有相同符号,则将它们视为相等。

【例】比较两个数组是否可以认为相等。

import numpy as np

x = np.isclose([1e10, 1e-7], [1.00001e10, 1e-8])
print(x)  # [ True False]

x = np.allclose([1e10, 1e-7], [1.00001e10, 1e-8])
print(x)  # False

x = np.isclose([1e10, 1e-8], [1.00001e10, 1e-9])
print(x)  # [ True  True]

x = np.allclose([1e10, 1e-8], [1.00001e10, 1e-9])
print(x)  # True

x = np.isclose([1e10, 1e-8], [1.0001e10, 1e-9])
print(x)  # [False  True]

x = np.allclose([1e10, 1e-8], [1.0001e10, 1e-9])
print(x)  # False

x = np.isclose([1.0, np.nan], [1.0, np.nan])
print(x)  # [ True False]

x = np.allclose([1.0, np.nan], [1.0, np.nan])
print(x)  # False

x = np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
print(x)  # [ True  True]

x = np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
print(x)  # True
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

三、练习题

1.数学函数

将数组a中大于30的值替换为30,小于10的值替换为10。

  • a = np.random.uniform(1, 50, 20)

【知识点:数学函数、搜索】

  • 如何将大于给定值的所有值替换为给定的截止值?
import numpy as np

np.set_printoptions(precision=2)
np.random.seed(100)
a = np.random.uniform(1, 50, 20)
print(a)
# [27.63 14.64 21.8  42.39  1.23  6.96 33.87 41.47  7.7  29.18 44.67 11.25
#  10.08  6.31 11.77 48.95 40.77  9.43 41.   14.43]

# 方法1
b = np.clip(a, a_min=10, a_max=30)
print(b)
# [27.63 14.64 21.8  30.   10.   10.   30.   30.   10.   29.18 30.   11.25
#  10.08 10.   11.77 30.   30.   10.   30.   14.43]

# 方法2
b = np.where(a < 10, 10, a)
b = np.where(b > 30, 30, b)
print(b)
# [27.63 14.64 21.8  30.   10.   10.   30.   30.   10.   29.18 30.   11.25
#  10.08 10.   11.77 30.   30.   10.   30.   14.43]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

找到一个一维数字数组a中的所有峰值。峰顶是两边被较小数值包围的点。

  • a = np.array([1, 3, 7, 1, 2, 6, 0, 1])

【知识点:数学函数、搜索】

  • 如何在一维数组中找到所有的局部极大值(或峰值)?
import numpy as np

a = np.array([1, 3, 7, 1, 2, 6, 0, 1])
b1 = np.diff(a)
b2 = np.sign(b1)
b3 = np.diff(b2)

print(b1)  # [ 2  4 -6  1  4 -6  1]
print(b2)  # [ 1  1 -1  1  1 -1  1]
print(b3)  # [ 0 -2  2  0 -2  2]
index = np.where(np.equal(b3, -2))[0] + 1
print(index) # [2 5]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

对于给定的一维数组,计算窗口大小为3的移动平均值。

  • z = np.random.randint(10, size=10)

【知识点:数学函数】

  • 如何计算numpy数组的移动平均值?
import numpy as np

np.random.seed(100)
z = np.random.randint(10, size=10)
print(z)
# [8 8 3 7 7 0 4 2 5 2]

def MovingAverage(arr, n=3):
    a = np.cumsum(arr)
    a[n:] = a[n:] - a[:-n]
    return a[n - 1:] / n


r = MovingAverage(z, 3)
print(np.around(r, 2))
# [6.33 6.   5.67 4.67 3.67 2.   3.67 3.  ]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

对一个5x5的随机矩阵做归一化

【知识点:数学函数】

  • (提示: (x - min) / (max - min))
Z = np.random.random((5,5))
Zmax, Zmin = Z.max(), Z.min()
Z = (Z - Zmin)/(Zmax - Zmin)
print(Z)
  • 1
  • 2
  • 3
  • 4

用五种不同的方法去提取一个随机数组的整数部分

【知识点:数学函数】

  • (提示: %, np.floor, np.ceil, astype, np.trunc)
Z = np.random.uniform(0,10,10)

print (Z - Z%1)
print (np.floor(Z))
print (np.ceil(Z)-1)
print (Z.astype(int))
print (np.trunc(Z))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

考虑一维数组Z,构建一个二维数组,其第一行为(Z [0],Z [1],Z [2]),随后的每一行都移位1(最后一行应为(Z [ -3],Z [-2],Z [-1])

【知识点:数学函数】

  • (提示np.lib.stride_tricks)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]--------> [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OaHSUHlX-1620374503354)(attachment:image.png)]

np.arange(10).itemsize

from numpy.lib import stride_tricks
def rolling(a, window):
    shape = (a.size - window + 1, window)
    strides = (a.itemsize, a.itemsize)
    return stride_tricks.as_strided(a, shape=shape, strides=strides)
Z = rolling(np.arange(10), 3)
print (Z)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

考虑两组点集P0和P1去描述一组线(二维)和一个点p,如何计算点p到每一条线 i (P0[i],P1[i])的距离?

【知识点:数学函数】

  • 提示 设P(x0,y0),直线方程为:Ax+By+C=0
    则P到直线的距离为:d=|Ax0+By0+C|/√(A²+B²)
import numpy as np
def distance(P0,P1,p):
    A=-1/(P1[:,0]-P0[:,0])
    B=1/(P1[:,1]-P0[:,1])
    C=P0[:,0]/(P1[:,0]-P0[:,0])-P0[:,1]/(P1[:,1]-P0[:,1])
    return np.abs(A*p[:,0]+B*p[:,1]+C)/np.sqrt(A**2+B**2)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,(10,2))
p  = np.random.uniform(-10,10,( 1,2))

print (distance(P0, P1, p))
  • 1
  • 2
  • 3
  • 4
  • 5

画正弦函数和余弦函数, x = np.arange(0, 3 * np.pi, 0.1)?

import numpy as np
from matplotlib import pyplot as plt
x = np.arange(0, 3*np.pi, 0.1)
y1 = np.sin(x)
y2 = np.cos(x)
plt.plot(x, y1)
plt.plot(x, y2)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

减去矩阵每一行的平均值 ?

X = np.random.rand(5, 10)
# 新
Y = X - X.mean(axis=1, keepdims=True)
# 旧
Y = X - X.mean(axis=1).reshape(-1, 1)
print(Y)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

进行概率统计分析 ?

  • arr1 = np.random.randint(1,10,10) arr2 = np.random.randint(1,10,10))
f
arr1 = np.random.randint(1,10,10)
arr2 = np.random.randint(1,10,10)

print("arr1的平均数为:%s" %np.mean(arr1))
print("arr1的中位数为:%s" %np.median(arr1))
print("arr1的方差为:%s" %np.var(arr1))
print("arr1的标准差为:%s" %np.std(arr1))
print("arr1,arr的相关性矩阵为:%s" %np.cov(arr1,arr2))
print("arr1,arr的协方差矩阵为:%s" %np.corrcoef(arr1,arr2))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

2.逻辑函数

获取a和b元素匹配的位置。

  • a = np.array([1, 2, 3, 2, 3, 4, 3, 4, 5, 6])
  • b = np.array([7, 2, 10, 2, 7, 4, 9, 4, 9, 8])

【知识点:逻辑函数】

  • 如何得到两个数组元素匹配的位置?
import numpy as np

a = np.array([1, 2, 3, 2, 3, 4, 3, 4, 5, 6])
b = np.array([7, 2, 10, 2, 7, 4, 9, 4, 9, 8])
mask = np.equal(a, b)

# 方法1
x = np.where(mask)
print(x)  # (array([1, 3, 5, 7], dtype=int64),)

# 方法2
x = np.nonzero(mask)
print(x)  # (array([1, 3, 5, 7], dtype=int64),)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

获取5到10 之间的所有元素。

  • a = np.array([2, 6, 1, 9, 10, 3, 27])

【知识点:逻辑函数】

  • 如何从numpy数组中提取给定范围内的所有元素?
import numpy as np

a = np.array([2, 6, 1, 9, 10, 3, 27])
mask = np.logical_and(np.greater_equal(a, 5), np.less_equal(a, 10))

# 方法1
x = np.where(mask)
print(a[x])  # [ 6  9 10]

# 方法2
x = np.nonzero(mask)
print(a[x])  # [ 6  9 10]

# 方法3
x = a[np.logical_and(a >= 5, a <= 10)]
print(x)  # [ 6  9 10]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

对于两个随机数组A和B,检查他们是否相等

【知识点:逻辑函数】

  • (提示: np.allclose, np.array_equal)
A = np.random.randint(0,2,5)
B = np.random.randint(0,2,5)
  • 1
  • 2

# Assuming identical shape of the arrays and a tolerance for the comparison of values
equal = np.allclose(A,B)
print(equal)
  • 1
  • 2
  • 3
  • 4

何对布尔值取反,或者原位(in-place)改变浮点数的符号(sign)?

【知识点:逻辑函数】

  • (提示: np.logical_not, np.negative)
Z = np.array([0,1])
print(Z)
np.logical_not(Z, out=Z)
# Z = np.random.uniform(-1.0,1.0,100)

# np.negative(Z, out=Z)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
Z = np.array([0.2,1.15])
print(Z)
np.negative(Z, out=Z)
  • 1
  • 2
  • 3

找出数组中与给定值最接近的数

Z=np.array([[0,1,2,3],[4,5,6,7]])
print(Z)
z=5.1
np.abs(Z - z).argmin()
print(Z.flat[np.abs(Z - z).argmin()])
  • 1
  • 2
  • 3
  • 4
  • 5
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/617310
推荐阅读
相关标签
  

闽ICP备14008679号