当前位置:   article > 正文

caffe-损失层-SoftmaxWithLossLayer 和SoftmaxLayer_softmaxloss layer是什么层

softmaxloss layer是什么层

类SoftmaxWithLossLayer包含类SoftmaxLayer的实例。其中SoftmaxLayer层在正向传导函数中将64*10的bottom_data,通过计算得到64*10的top_data。这可以理解为输入数据为64个样本,每个样本特征数量为10,计算这64个样本分别在10个类别上的概率。公式如下,其中n=10,

SoftmaxWithLossLayer层利用SoftmaxLayer层的输出计算损失,公式如下,其中N为一个batch的大小(MNIST训练时batch_size为64,测试时batch_size为100)。 根据Cross-Entropy的定义有, 

反向传导时,计算偏导 


需要注意的一点是,在反向传导时SoftmaxWithLossLayer层并没有向正向传导时借用SoftmaxLayer层实现一部分,而是一手全部包办了。因此SoftmaxLayer::Backward_cpu()函数也就被闲置了。

如果网络在训练期间发散了,则最终计算结果accuracy ≈ 0.1(说明机器完全没有预测精度,纯靠蒙), loss ≈-log(0.1) = 2.3026。如果大家看见loss为2.3左右,就应该了解当前网络没有收敛,需要调节参数配置。至于怎么调节嘛,这往往就依赖经验了……

几个类的类关系图如下图所示, 
SoftmaxLayer类图

为了搞清楚传导的流程,我们首先看下SoftmaxLayer是如何工作的,头文件为softmax_layer.hpp

  1. template <typename Dtype>
  2. class SoftmaxLayer : public Layer<Dtype> {
  3. public:
  4. explicit SoftmaxLayer(const LayerParameter& param)
  5. : Layer<Dtype>(param) {}
  6. virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
  7. const vector<Blob<Dtype>*>& top);
  8. virtual inline const char* type() const { return "Softmax"; }
  9. virtual inline int ExactNumBottomBlobs() const { return 1; }
  10. virtual inline int ExactNumTopBlobs() const { return 1; }
  11. protected:
  12. // 重载CPU和GPU正反向传导虚函数
  13. virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
  14. const vector<Blob<Dtype>*>& top);
  15. virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
  16. const vector<Blob<Dtype>*>& top);
  17. virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
  18. const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  19. virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
  20. const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  21. int outer_num_;
  22. int inner_num_;
  23. int softmax_axis_;
  24. /// 乘子
  25. Blob<Dtype> sum_multiplier_;
  26. /// scale is an intermediate Blob to hold temporary results.
  27. Blob<Dtype> scale_;
  28. };
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

这里的sum_multiplier_一样全部被初始化为1了的。而scale_的大小尺寸有点奇怪,在批处理的时候通常都会有num这个东西来表示数量,而scale又是单通道的。

大概是要将所有通道的数据的计算结果全部放在一起吧。


实现在softmax_layer.cpp文件中,

  1. template <typename Dtype>
  2. void SoftmaxLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
  3. const vector<Blob<Dtype>*>& top) {
  4. softmax_axis_ =
  5. bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
  6. top[0]->ReshapeLike(*bottom[0]);
  7. vector<int> mult_dims(1, bottom[0]->shape(softmax_axis_));
  8. sum_multiplier_.Reshape(mult_dims);
  9. Dtype* multiplier_data = sum_multiplier_.mutable_cpu_data();
  10. // 乘子初始化为1
  11. caffe_set(sum_multiplier_.count(), Dtype(1), multiplier_data);
  12. outer_num_ = bottom[0]->count(0, softmax_axis_);
  13. inner_num_ = bottom[0]->count(softmax_axis_ + 1);
  14. vector<int> scale_dims = bottom[0]->shape();
  15. scale_dims[softmax_axis_] = 1;
  16. scale_.Reshape(scale_dims);
  17. }
  18. // CPU正向传导
  19. template <typename Dtype>
  20. void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
  21. const vector<Blob<Dtype>*>& top) {
  22. const Dtype* bottom_data = bottom[0]->cpu_data();
  23. Dtype* top_data = top[0]->mutable_cpu_data();
  24. Dtype* scale_data = scale_.mutable_cpu_data();
  25. int channels = bottom[0]->shape(softmax_axis_);
  26. int dim = bottom[0]->count() / outer_num_;
  27. caffe_copy(bottom[0]->count(), bottom_data, top_data);
  28. // 遍历bottom_data查找最大值,存入scale_data
  29. for (int i = 0; i < outer_num_; ++i) {
  30. // 初始化scale_data为bottom_data首元素
  31. caffe_copy(inner_num_, bottom_data + i * dim, scale_data);
  32. for (int j = 0; j < channels; j++) {
  33. for (int k = 0; k < inner_num_; k++) {
  34. scale_data[k] = std::max(scale_data[k],
  35. bottom_data[i * dim + j * inner_num_ + k]);
  36. }
  37. }
  38. // 减去最大值(top_data = bottom_data - max(bottom_data))
  39. caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_,
  40. 1, -1., sum_multiplier_.cpu_data(), scale_data, 1., top_data);
  41. // exp求幂
  42. caffe_exp<Dtype>(dim, top_data, top_data);
  43. // 累加求和,存放在scale_data中
  44. caffe_cpu_gemv<Dtype>(CblasTrans, channels, inner_num_, 1.,
  45. top_data, sum_multiplier_.cpu_data(), 0., scale_data);
  46. // division
  47. for (int j = 0; j < channels; j++) {
  48. // top_data = top_data / scale_data
  49. caffe_div(inner_num_, top_data, scale_data, top_data);
  50. // 加偏移跳转指针
  51. top_data += inner_num_;
  52. }
  53. }
  54. }
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85

从代码中可以看到,反向的时候,批处理中每个图像是分别处理的:

先将某个图像按照通道维度计算最大值,存入scale_data中,所以感觉上scale_data只需要height*width大小的存储空间就够了,但是实际上却开辟了num*height*width。

这里的反向计算过程中可能与斯坦福的介绍稍微有点差别,不过原理上都是一样的,这里的反向计算如下:

假设某一个图像在某一个(channel, height, width)的坐标上的数据为x,在通道(channel, :, :)上的最大值为x_max;

在for后面的两个小for里面就是计算这个x_max;

之后的计算可以理解成遍历该通道的所有数据:(实际上是所有通道一起计算的)

之后再计算: x - x_max;

再之后计算指数:exp(x-x_max);

在求和这些指数:sum(x: exp(x-x_max));

最后再用除法,即:


在源码中解释道了为什么要减去最大值,这是因为避免所谓的“数值问题”,那么到底是什么问题呢?我们知道指数函数是一个严格递增的函数,如果直接使用x的话,可能会造成大数吃小数的问题,因为sum的分母会因为某一个x很大而整体很大,其余的很多小x都会因此变得非常小。估计源码中说到的就是这个问题吧。

整个反向过程看完了,还是不明白为啥scale_data开辟的空间会比实际使用的大很多呢?

  1. // CPU反向传导(此函数未被调用)
  2. template <typename Dtype>
  3. void SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
  4. const vector<bool>& propagate_down,
  5. const vector<Blob<Dtype>*>& bottom) {
  6. const Dtype* top_diff = top[0]->cpu_diff();
  7. const Dtype* top_data = top[0]->cpu_data();
  8. Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
  9. Dtype* scale_data = scale_.mutable_cpu_data();
  10. int channels = top[0]->shape(softmax_axis_);
  11. int dim = top[0]->count() / outer_num_;
  12. caffe_copy(top[0]->count(), top_diff, bottom_diff);
  13. for (int i = 0; i < outer_num_; ++i) {
  14. // 计算top_diff和top_data的点积
  15. for (int k = 0; k < inner_num_; ++k) {
  16. scale_data[k] = caffe_cpu_strided_dot<Dtype>(channels,
  17. bottom_diff + i * dim + k, inner_num_,
  18. top_data + i * dim + k, inner_num_);
  19. }
  20. // 从bottom_diff减去该值
  21. caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1,
  22. -1., sum_multiplier_.cpu_data(), scale_data, 1., bottom_diff + i * dim);
  23. }
  24. // 逐点相乘
  25. caffe_mul(top[0]->count(), bottom_diff, top_data, bottom_diff);
  26. // 以上步骤等价于bottom_diff = top_diff * (top_data - top_data * top_data)
  27. // 此公式更容易推导和理解
  28. }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85

反向的过程其实很优雅,说优雅是因为softmax本身就非常优雅,看似很复杂的函数表达式,导数的计算确实非常的简便:

所以,误差传递过程是:

这个误差传递的过程,也是源码的计算思路过程:

先直接将top_diff存入bottom_diff中;

再计算这个误差与top_data的乘积存放在scale_data中;

在计算误差减掉scale_data,还是存放在bottom_diff中;

最后再计算bottom_diif与top_data的乘积,存入bottom_diff中。


再回过来看SoftmaxWithLossLayer的源代码,先看一下它的基类LossLayer是如何实现的。

  1. template <typename Dtype>
  2. class LossLayer : public Layer<Dtype> {
  3. public:
  4. explicit LossLayer(const LayerParameter& param)
  5. : Layer<Dtype>(param) {}
  6. virtual void LayerSetUp(
  7. const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top);
  8. virtual void Reshape(
  9. const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top);
  10. virtual inline int ExactNumBottomBlobs() const { return 2; }
  11. // 自动添加top blob
  12. virtual inline bool AutoTopBlobs() const { return true; }
  13. virtual inline int ExactNumTopBlobs() const { return 1; }
  14. virtual inline bool AllowForceBackward(const int bottom_index) const {
  15. return bottom_index != 1;
  16. }
  17. };
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

cpp实现如下,

  1. template <typename Dtype>
  2. void LossLayer<Dtype>::LayerSetUp(
  3. const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  4. // LossLayers have a non-zero (1) loss by default.
  5. if (this->layer_param_.loss_weight_size() == 0) {
  6. this->layer_param_.add_loss_weight(Dtype(1));
  7. }
  8. }
  9. template <typename Dtype>
  10. void LossLayer<Dtype>::Reshape(
  11. const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  12. CHECK_EQ(bottom[0]->num(), bottom[1]->num())
  13. << "The data and label should have the same number.";
  14. vector<int> loss_shape(0); // Loss layers output a scalar; 0 axes.
  15. top[0]->Reshape(loss_shape);
  16. }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

再看一下子类SoftmaxWithLossLayer的实现,

  1. template <typename Dtype>
  2. class SoftmaxWithLossLayer : public LossLayer<Dtype> {
  3. public:
  4. // 构造函数
  5. explicit SoftmaxWithLossLayer(const LayerParameter& param)
  6. : LossLayer<Dtype>(param) {}
  7. virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
  8. const vector<Blob<Dtype>*>& top);
  9. virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
  10. const vector<Blob<Dtype>*>& top);
  11. virtual inline const char* type() const { return "SoftmaxWithLoss"; }
  12. virtual inline int ExactNumTopBlobs() const { return -1; }
  13. virtual inline int MinTopBlobs() const { return 1; }
  14. virtual inline int MaxTopBlobs() const { return 2; }
  15. protected:
  16. // 重载CPU和GPU正反向传导虚函数
  17. virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
  18. const vector<Blob<Dtype>*>& top);
  19. virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
  20. const vector<Blob<Dtype>*>& top);
  21. virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
  22. const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  23. virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
  24. const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  25. // 返回归一化计数
  26. virtual Dtype get_normalizer(
  27. LossParameter_NormalizationMode normalization_mode, int valid_count);
  28. /// SoftmaxLayer类实例
  29. shared_ptr<Layer<Dtype> > softmax_layer_;
  30. /// prob_作为SoftmaxLayer的输出blob
  31. Blob<Dtype> prob_;
  32. /// 指针指向bottom[0],作为SoftmaxLayer的输入blob
  33. vector<Blob<Dtype>*> softmax_bottom_vec_;
  34. /// 指针指向prob_
  35. vector<Blob<Dtype>*> softmax_top_vec_;
  36. /// 标识位,是否忽略标签
  37. bool has_ignore_label_;
  38. /// 被忽略的标签值
  39. int ignore_label_;
  40. /// 标识如何归一化loss
  41. LossParameter_NormalizationMode normalization_;
  42. // 维数、输出样本数
  43. int softmax_axis_, outer_num_, inner_num_;
  44. };
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

softmax_loss_layer.cpp定义如下,

  1. template <typename Dtype>
  2. void SoftmaxWithLossLayer<Dtype>::LayerSetUp(
  3. const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  4. LossLayer<Dtype>::LayerSetUp(bottom, top);
  5. LayerParameter softmax_param(this->layer_param_);
  6. softmax_param.set_type("Softmax");
  7. // 创建SoftmaxLayer层
  8. softmax_layer_ = LayerRegistry<Dtype>::CreateLayer(softmax_param);
  9. softmax_bottom_vec_.clear();
  10. // bottom[0]作为SoftmaxLayer层输入
  11. softmax_bottom_vec_.push_back(bottom[0]);
  12. softmax_top_vec_.clear();
  13. // prob_作为SoftmaxLayer层输出
  14. softmax_top_vec_.push_back(&prob_);
  15. // 建立SoftmaxLayer层
  16. softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);
  17. has_ignore_label_ =
  18. this->layer_param_.loss_param().has_ignore_label();
  19. if (has_ignore_label_) {
  20. // 如果支持忽略标签,则读取被忽略标签的值
  21. ignore_label_ = this->layer_param_.loss_param().ignore_label();
  22. }
  23. // 确定归一化计数方式
  24. if (!this->layer_param_.loss_param().has_normalization() &&
  25. this->layer_param_.loss_param().has_normalize()) {
  26. normalization_ = this->layer_param_.loss_param().normalize() ?
  27. LossParameter_NormalizationMode_VALID :
  28. LossParameter_NormalizationMode_BATCH_SIZE;
  29. } else {
  30. normalization_ = this->layer_param_.loss_param().normalization();
  31. }
  32. }
  33. template <typename Dtype>
  34. void SoftmaxWithLossLayer<Dtype>::Reshape(
  35. const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  36. LossLayer<Dtype>::Reshape(bottom, top);
  37. softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_);
  38. softmax_axis_ =
  39. bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
  40. outer_num_ = bottom[0]->count(0, softmax_axis_);
  41. inner_num_ = bottom[0]->count(softmax_axis_ + 1);
  42. CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
  43. << "Number of labels must match number of predictions; "
  44. << "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
  45. << "label count (number of labels) must be N*H*W, "
  46. << "with integer values in {0, 1, ..., C-1}.";
  47. if (top.size() >= 2) {
  48. // softmax output
  49. top[1]->ReshapeLike(*bottom[0]);
  50. }
  51. }
  52. // 返回归一化计数
  53. template <typename Dtype>
  54. Dtype SoftmaxWithLossLayer<Dtype>::get_normalizer(
  55. LossParameter_NormalizationMode normalization_mode, int valid_count) {
  56. Dtype normalizer;
  57. switch (normalization_mode) {
  58. case LossParameter_NormalizationMode_FULL:
  59. // 返回全部输出样本数
  60. normalizer = Dtype(outer_num_ * inner_num_);
  61. break;
  62. case LossParameter_NormalizationMode_VALID:
  63. if (valid_count == -1) {
  64. normalizer = Dtype(outer_num_ * inner_num_);
  65. } else {
  66. // 只返回有效统计的样本数
  67. normalizer = Dtype(valid_count);
  68. }
  69. break;
  70. case LossParameter_NormalizationMode_BATCH_SIZE:
  71. normalizer = Dtype(outer_num_);
  72. break;
  73. case LossParameter_NormalizationMode_NONE:
  74. normalizer = Dtype(1);
  75. break;
  76. default:
  77. LOG(FATAL) << "Unknown normalization mode: "
  78. << LossParameter_NormalizationMode_Name(normalization_mode);
  79. }
  80. // 防止使用不带标签的数据出现归一化计数为0,从而导致分母为零
  81. return std::max(Dtype(1.0), normalizer);
  82. }
  83. // CPU正向传导
  84. template <typename Dtype>
  85. void SoftmaxWithLossLayer<Dtype>::Forward_cpu(
  86. const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
  87. // 先对SoftmaxLayer层正向传导
  88. softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
  89. const Dtype* prob_data = prob_.cpu_data();
  90. const Dtype* label = bottom[1]->cpu_data();
  91. int dim = prob_.count() / outer_num_;
  92. int count = 0;
  93. Dtype loss = 0;
  94. for (int i = 0; i < outer_num_; ++i) {
  95. for (int j = 0; j < inner_num_; j++) {
  96. // 取出真实标签值
  97. const int label_value = static_cast<int>(label[i * inner_num_ + j]);
  98. if (has_ignore_label_ && label_value == ignore_label_) {
  99. continue;
  100. }
  101. DCHECK_GE(label_value, 0);
  102. DCHECK_LT(label_value, prob_.shape(softmax_axis_));
  103. // 从SoftmaxLayer层输出(prob_data)中,找到与标签值对应位的预测概率,对其取-log,并对batch_size个值累加
  104. loss -= log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
  105. Dtype(FLT_MIN)));
  106. ++count;
  107. }
  108. }
  109. // loss除以样本总数batch,得到平均单个样本的loss
  110. top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count);
  111. if (top.size() == 2) {
  112. top[1]->ShareData(prob_);
  113. }
  114. }
  115. // CPU反向传导
  116. template <typename Dtype>
  117. void SoftmaxWithLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
  118. const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
  119. if (propagate_down[1]) {
  120. LOG(FATAL) << this->type()
  121. << " Layer cannot backpropagate to label inputs.";
  122. }
  123. if (propagate_down[0]) {
  124. Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
  125. const Dtype* prob_data = prob_.cpu_data();
  126. // 先将正向传导时计算的prob_数据(f(y_k))拷贝至偏导
  127. caffe_copy(prob_.count(), prob_data, bottom_diff);
  128. const Dtype* label = bottom[1]->cpu_data();
  129. int dim = prob_.count() / outer_num_;
  130. int count = 0;
  131. for (int i = 0; i < outer_num_; ++i) {
  132. for (int j = 0; j < inner_num_; ++j) {
  133. const int label_value = static_cast<int>(label[i * inner_num_ + j]);
  134. // 如果为忽略标签,则偏导为0
  135. if (has_ignore_label_ && label_value == ignore_label_) {
  136. for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
  137. bottom_diff[i * dim + c * inner_num_ + j] = 0;
  138. }
  139. } else {
  140. // 计算偏导,预测正确的bottom_diff = f(y_k) - 1,其它不变
  141. bottom_diff[i * dim + label_value * inner_num_ + j] -= 1;
  142. ++count;
  143. }
  144. }
  145. }
  146. // top[0]->cpu_diff()[0] = 1.0,已在SetLossWeights()函数中初始化
  147. Dtype loss_weight = top[0]->cpu_diff()[0] /
  148. get_normalizer(normalization_, count);
  149. // 将bottom_diff归一化
  150. caffe_scal(prob_.count(), loss_weight, bottom_diff);
  151. }
  152. }

反向传导时,计算偏导 


需要注意的一点是,在反向传导时SoftmaxWithLossLayer层并没有向正向传导时借用SoftmaxLayer层实现一部分,而是一手全部包办了。因此SoftmaxLayer::Backward_cpu()函数也就被闲置了。


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/133325
推荐阅读
相关标签
  

闽ICP备14008679号