当前位置:   article > 正文

python实现数据归一化处理的方式:(0,1)标准化_python归一化处理计算公式

python归一化处理计算公式

在机器学习过程中,对数据的处理过程中,常常需要对数据进行归一化处理,下面介绍(0, 1)标准化的方式,简单的说,其功能就是将预处理的数据的数值范围按一定关系“压缩”到(0,1)的范围类。
通常(0, 1)标注化处理的公式为:
x n o r m a l i z a t i o n = x − M i n M a x − M i n {x}_{normalization}=\frac{x-Min}{Max-Min} xnormalization=MaxMinxMin,即将样本点的数值减去最小值,再除以样本点数值最大与最小的差,原理公式就是这么基础。
下面看看使用python语言来编程实现吧

import numpy as np
import matplotlib.pyplot as plt


def noramlization(data):
    minVals = data.min(0)
    maxVals = data.max(0)
    ranges = maxVals - minVals
    normData = np.zeros(np.shape(data))
    m = data.shape[0]
    normData = data - np.tile(minVals, (m, 1))
    normData = normData/np.tile(ranges, (m, 1))
    return normData, ranges, minVals


x = np.array([[78434.0829, 26829.86612], [78960.4042, 26855.13451], [72997.8308, 26543.79201],
              [74160.2849, 26499.56629], [75908.5746, 26220.11996], [74880.6989, 26196.03995],
              [74604.7169, 27096.87862], [79547.6796, 25986.68579], [74997.7791, 24021.50132],
              [74487.4915, 26040.18441], [77134.2636, 24647.274],   [74975.2792, 24067.31441],
              [76013.5305, 24566.02273], [79191.518,  26840.29867], [80653.4589, 25937.22248],
              [79185.9935, 26996.18228], [74426.881,  24227.71439], [73246.4295, 26561.59268],
              [77963.1478, 25580.05298], [74469.8778, 26082.15448], [81372.3787, 26649.69232],
              [76826.8262, 24549.77367], [77774.2608, 25999.96037], [79673.1361, 25229.04353],
              [75251.7951, 24902.72185], [78458.073,  23924.15117], [82247.5439, 29671.33493],
              [82041.2247, 27903.34268], [80083.2029, 28692.35517], [80962.0043, 28519.81002],
              [79799.8328, 28740.27736], [80743.9947, 28862.75402], [80888.449,  29724.53706],
              [81768.4638, 30180.20618], [80283.8783, 30417.55057], [79460.7078, 29092.52867],
              [75514.1202, 28071.73721], [80595.5945, 30292.25917], [80750.4876, 29651.32254],
              [80020.662,  30023.70025], [82992.3395, 29466.83067], [80185.5946, 29943.15481],
              [81854.6163, 29846.18257], [81526.4017, 30218.27078], [79174.5312, 29960.69999],
              [78112.3051, 26467.57545], [80262.4121, 29340.23218], [81284.9734, 28257.71529],
              [81928.9905, 28752.84811], [80739.2727, 29288.85126], [83135.3435, 30223.4974],
              [83131.8223, 29049.10112], [82549.9076, 28910.15209], [81574.0822, 28326.55367],
              [80507.399,  28553.56851], [82956.2103, 29157.62372], [81909.7132, 29359.24497],
              [80893.5603, 29326.64155], [82520.1272, 30424.96703], [82829.8548, 31062.24418],
              [80532.1495, 29198.10407], [80112.7963, 29143.47905], [81175.0882, 28443.10574]])

newgroup, _, _ = noramlization(x)
newdata = newgroup
plt.scatter(x[:, 0], x[:, 1], marker='*', c='r', s=24)
plt.show()
print(len(x[:, 0]))
print(len(x[:, 1]))
print(newdata)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

将数据进行归一化处理后,并使用matplotlib绘制出处理后的散点图分布如下:
在这里插入图片描述
可以看到数据的数值范围均为(0,1)之间了

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号