赞
踩
1.普通的机器学习模型:其实,基本上所有的基本机器学习模型都可以概括为以下的特征:根据某个函数,将输入计算并输出。
图形化表示为下图:当我们的g(h)为sigmoid函数时候,它就是一个逻辑回归的分类器。当g(h)是一个只能取0或1值的函数时,它就是一个感知机。
那么问题来了,这一类模型有明显缺陷:当模型线性不可分的时候,或者所选取得特征不完备(或者不够准确)的时候,上述分类器效果并不是特别喜人。
如下例:我们可以很轻易的用一个感知机模型(感知器算法)来实现一个逻辑与(and),逻辑或(or)和逻辑或取反的感知器模型,(感知器模型算法链接),因为上述三种模型是线性可分的。
但是,如果我们用感知器模型取实现一个逻辑非异或(相同为1,不同为0),我们的训练模型的所有输出都会是错误的,该模型线性不可分!
2.神经网络引入:我们可以构造以下模型:(其中,A代表逻辑与,B代表逻辑或取反,C代表逻辑或)上述模型就是一个简单的神经网络,我们通过构造了三个感知器,并将两个感知器的输出作为了另一个感知其的输入,实现了我们想要的逻辑非异或模型,解决了上述的线性不可分问题。
那么问题是怎么解决的
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。