赞
踩
Otsu算法:最大类间方差法(大津算法),是一种确定阈值的算法。
之所以称为最大类间方差法是因为,用该阈值进行的图像固定阈值二值化,类间方差最大,它是按图像的灰度特性,将图像分成背景和前景两部分,使类间方差最大的分割意味着错分概率最小。
原理:
对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均灰度记为μ,类间方差记为g。
假设图像的背景较暗,并且图像的大小为M×N,图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:
(1) ω0=N0/ (M×N)
(2) ω1=N1/ (M×N)
(3) N0 + N1 = M×N
(4) ω0 + ω1 = 1
(5) μ = ω0 * μ0 + ω1 * μ1
(6) g = ω0 * (μ0 - μ)2 + ω1 * (μ1 - μ)2
将式(5)代入式(6),得到等价公式:
(7) g = ω0 *ω1 * (μ0 - μ1)2
采用遍历的方法得到使类间方差g最大的阈值T。
算法评价:
优点:算法简单,当目标与背景的面积相差不大时,能够有效地对图像进行分割。
缺点:当图像中的
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。