当前位置:   article > 正文

matlab vgg图像风格迁移,GitHub - AaronJny/nerual_style_change: 使用VGG19迁移学习实现图像风格迁移。...

基于vgg19实现的图片风格迁移 github

此项目使用Python2.7+TensorFlow 1.4编写,环境太过古老,可能无法正常运行起来。

如有需要,请移步我使用Python 3.7 + TensorFlow 2.0重写的版本:

使用VGG19迁移学习实现图像风格迁移

这是一个使用预训练的VGG19网络完成图片风格迁移的项目,使用的语言为python,框架为tensorflow。

给定一张风格图片A和内容图片B,能够生成具备A图片风格和B图片内容的图片C。

下面给出两个示例,风格图片都使用梵高的星夜:

22522b254bc81346a780586faf2a38a4.png

示例1:

网络上找到的一张风景图片。

内容图片:

2a35941028b5311a24e04d814768552f.png

生成图片:

ff3ef49a23f7f42226b265ff45b20b12.png

示例2:

嗷嗷嗷,狼人嚎叫~

内容图片:

efd623bfc837ef5c7d89c0241f16a7b3.png

生成图片:

e9655074ac4521ec39d24a8ff4f2fbc2.png

快速开始

1.下载预训练的vgg网络,并放入到项目的根目录中

模型有500M+,故没有放到GitHub上,有需要请自行下载。

2.选定风格图片和内容图片,放入项目根目录下的images文件夹中

在项目根目录下的images文件夹中,有两张图片,分别为content.jpg和style.jpg,即内容图片和风格图片。

如果只是使用默认图片测试模型,这里可以不做任何操作。

如果要测试自定义的图片,请使用自定义的内容图片和/或风格图片替换该目录下的内容图片和/或风格图片,请保持命名与默认一致,或者在settings.py中修改路径及名称。

3.开始生成图片

运行项目中的train.py文件,进行训练。在训练过程中,程序会定期提示进度,并保存过程图片。

当训练结束后,保存最终生成图片。

所有生成的图片均保存在项目根目录下output文件夹中。

4.更多设置

在settings.py文件中存在多种配置项,可根据需求进行配置。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/530318
推荐阅读
相关标签
  

闽ICP备14008679号