当前位置:   article > 正文

HBase概括

HBase概括

一、HBase概述

HBase是一个高可靠性、高性能、可伸缩的分布式存储系统,用于存储海量的结构化或者半结构化,非结构化的数据。6

HBase是Hadoop的生态系统之一,是建立在Hadoop文件系统(HDFS)之上的分布式、面向列的数据库,通过利用Hadoop的文件系统提供容错能力。如果需要进行实时读写或者随机访问大规模的数据集的时候,会考虑使用HBase。

HBase作为Google Bigtable的开源实现,Google Bigtable利用GFS作为其文件存储系统类似,则HBase利用Hadoop HDFS作为其文件存储系统;Google通过运行MapReduce来处理Bigtable中的海量数据,同样,HBase利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用Chubby作为协同服务,HBase利用Zookeeper作为元数据的元数据存储和容灾。在2010年5月,成为apache顶级项目二、 二、

 二、HBase数据模型

HBase将数据存放在带有标签的中,表由行和列组成,行和列交叉确定一个单元格,单元格有版本号,版本号自动分配,为数据插入该单元格时的时间戳。单元格的内容没有数据类型,所有数据都被视为未解释的字节数组

  表格中每一行有一个行键(也是字节数组,任何形式的数据都可以表示成字符串,比如数据结构进行序列化之后),整个表根据行键的字节序来排序,所有对表的访问必须通过行键。

  表中的列又划分为多个列族(column family),同一个列族的所有成员具有相同的前缀,具体的列由列修饰符标识,因此,列族和列修饰符合起来才可以表示某一列

 

 在创建一个表的时候,列族必须作为模式定义的一部分预先给出,而列族是支持动态扩展的,也就是列族成员可以随后按需加入。物理上,所有的列族成员一起存放在文件系统上,所以实际上说HBase是面向列的数据库,更准确的应该是面向列族,调优和存储都是在列族这个层次上进行的。一般情况下,同一个列族的成员最后具有相同的访问模式和大小特征。

  总结起来,HBase表和我们熟知的RDBMS的表很像,不同之处在于:行按行键排序,列划分为列族,单元格有版本号,没有数据类型。

三、HBase系统架构

1.架构图

 2.组件介绍

HBase由三种类型的服务器以主从模式构成:

  • Region Server:负责数据的读写服务,用户通过与Region server交互来实现对数据的访问。

  • HBase HMaster:负责Region的分配及数据库的创建和删除等操作。

  • ZooKeeper:负责维护集群的状态(某台服务器是否在线,服务器之间数据的同步操作及master的选举等)。

HDFS的DataNode负责存储所有Region Server所管理的数据,即HBase中的所有数据都是以HDFS文件的形式存储的。出于使Region server所管理的数据更加本地化的考虑,Region server是根据DataNode分布的。HBase的数据在写入的时候都存储在本地。但当某一个region被移除或被重新分配的时候,就可能产生数据不在本地的情况。这种情况只有在所谓的compaction之后才能解决。

Client

包含访问HBase的接口并维护cache来加快对HBase的访问

Zookeeper

保证任何时候,集群中只有一个master

存贮所有Region的寻址入口。

实时监控Region server的上线和下线信息。并实时通知Master

存储HBase的schema和table元数据的meta信息

Master

为Region server分配region

负责Region server的负载均衡

发现失效的Region server并重新分配其上的region

管理用户对table的增删改操作

RegionServer

Region server维护region,处理对这些region的IO请求

Region server负责切分在运行过程中变得过大的region 

HLog(WAL log):

HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是 HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和 region名字外,同时还包括sequence number和timestamp,timestamp是” 写入时间”,sequence number的起始值为0,或者是最近一次存入文件系 统sequence number。

HLog SequeceFile的Value是HBase的KeyValue对象,即对应HFile中的 KeyValue

Region

HBase自动把表水平划分成多个区域(region),每个region会保存一个表里面某段连续的数据;每个表一开始只有一个region,随着数据不断插 入表,region不断增大,当增大到一个阀值的时候,region就会等分会两个新的region(裂变);

当table中的行不断增多,就会有越来越多的region。这样一张完整的表被保存在多个Regionserver上。

Memstore 与 storefile
  1. 一个region由多个store组成,一个store对应一个CF(列簇)

  2. store包括位于内存中的memstore和位于磁盘的storefile写操作先写入 memstore,当memstore中的数据达到某个阈值,hregionserver会启动 flashcache进程写入storefile,每次写入形成单独的一个storefile

  3. 当storefile文件的数量增长到一定阈值后,系统会进行合并(minor、 major compaction),在合并过程中会进行版本合并和删除工作 (majar),形成更大的storefile。

  4. 当一个region所有storefile的大小和超过一定阈值后,会把当前的region 分割为两个,并由hmaster分配到相应的regionserver服务器,实现负载均衡。

  5. 客户端检索数据,先在memstore找,找不到再找storefile

  6. HRegion是HBase中分布式存储和负载均衡的最小单元。最小单元就表 示不同的HRegion可以分布在不同的HRegion server上。

  7. HRegion由一个或者多个Store组成,每个store保存一个columns family。

  8. 每个Strore又由一个memStore和0至多个StoreFile组成。

如图:StoreFile 以HFile格式保存在HDFS上。

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/554551
推荐阅读
相关标签
  

闽ICP备14008679号