当前位置:   article > 正文

近年来机器人主流抓取估计方法总结

近年来机器人主流抓取估计方法总结

本文同步于微信公众号:3D视觉前沿,欢迎大家关注。

根据抓取的表示,应用场合等可以将机器人抓取分为2D平面抓取和6-DoF空间抓取,各自又包含很多方法,下面一一介绍。

1 2D 平面抓取:

适合工业抓取,场景是机械臂竖直向下,从单个角度去抓,抓取通常由平面内的抓取四边形,以及平面内的旋转角度表示(Oriented 2D rectangle):
在这里插入图片描述
根据使用的数据RGB/Depth不同,又可以分为以下三类:基于RGB,基于RGB+Depth,和基于Depth。

1.1 基于RGB的抓取估计

数据集包括:Cornell数据集(http://pr.cs.cornell.edu/grasping/rect_data/data.php)和Jacquard数据集https://jacquard.liris.cnrs.fr/,为 人工构建;
在这里插入图片描述
基于以上的数据集,出现了很多方法,代表作是2014-Deep Learing for Detecting Robotic Grasps,2014-Real-Time Grasp Detection Using Convolutional Neural Networks,2018-Real-world Multi-object, Multi-grasp Detection等,首先生成大量抓取框候选,再进一步优化得到最终抓取;
在这里插入图片描述
亚马逊论文2015-Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot Hours使用机器自动采集训练集,训练了一个平面抓取估计算法,其数据集如下:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/556327
推荐阅读
相关标签
  

闽ICP备14008679号