赞
踩
ChatGLM [paper] [code] [model]
WizardLM [paper] [code] [model]
ChatGLM2[paper] [code] [model]
InternLM [paper] [code] [model]
Llama 2 [paper] [code] [model]
Code Llama [paper] [code] [model]
Baichuan 2 [paper]
[code] [model]
Mistral-7B [paper]
[code]
[model]
Deepseek [paper]
[code]
[model]
MiniCPM [paper]
[code]
[model]
MiniCPM是一系列端侧语言大模型,主体语言模型MiniCPM-2B具有2.4B的非词嵌入参数量。在综合性榜单上与Mistral-7B相近(中文、数学、代码能力更优),整体性能超越Llama2-13B、MPT-30B、Falcon-40B等模型。在当前最接近用户体感的榜单MTBench上,MiniCPM-2B也超越了Llama2-70B-Chat、Vicuna-33B、Mistral-7B-Instruct-v0.1、Zephyr-7B-alpha等众多代表性开源大模型。
我们将完全开源MiniCPM-2B的模型参数供学术研究和有限商用,以及训练过程中的所有Checkpoint和大部分非专有数据(需要一定时间准备)给模型机理研究。
局限性:
更多内容见官网
RRTF [paper]
RLAIF [paper]
(2023-arXiv, None) Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded Text-to-SQLs
[paper]
[code]
(2023-arXiv, None) DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self-Correction
[paper]
[code]
(2023-arXiv, None) A comprehensive evaluation of ChatGPT’s zero-shot Text-to-SQL capability
[paper]
[code]
(2023-ICLR, CCF-A) Binding Language Models in Symbolic Languages
[paper]
[code]
(2023-SIGMOD, CCF-A) Few-shot Text-to-SQL Translation using Structure and Content Prompt Learning
[paper]
[code]
(2023-ICASSP, CCF-B) T5-SR: A Unified Seq-to-Seq Decoding Strategy for Semantic Parsing
[paper]
(2022-ACL, CCF-A) S2SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder for Text-to-SQL Parsers
[paper]
(2022-NAACL, CCF-B) SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising
[paper]
(2022-EMNLP, CCF-B) STAR: SQL Guided Pre-Training for Context-dependent Text-to-SQL Parsing
[paper]
[code]
(2022-EMNLP, CCF-B) RASAT: Integrating Relational Structures into Pretrained Seq2Seq Model for Text-to-SQL
[paper]
[code]
(2022-EMNLP, CCF-B) CQR-SQL: Conversational Question Reformulation Enhanced Context-Dependent Text-to-SQL Parsers
[paper]
(2022-ACL, CCF-A) HIE-SQL: History Information Enhanced Network for Context-Dependent Text-to-SQL Semantic Parsing
[paper]
(2022-arXiv, None) Importance of Synthesizing High-quality Data for Text-to-SQL Parsing
[paper]
(2021-ACL, CCF-A) Decoupled Dialogue Modeling and Semantic Parsing for Multi-Turn Text-to-SQL
[paper]
(2021-arXiv, None) Pay More Attention to History: A Context Modelling Strategy for Conversational Text-to-SQL
[paper]
[code]
(2021-ICLR, CCF-A) SCORE: Pre-training for Context Representation in Conversational Semantic Parsing
[paper]
(2021-DASFAA, CCF-B) An Interactive NL2SQL Approach with Reuse Strategy
[paper]
(2021-NAACL, CCF-B) Structure-Grounded Pretraining for Text-to-SQL
[paper]
(2021-EMNLP, CCF-B) PICARD:Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
[paper]
[code]
(2021-ICLR, CCF-A) GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing
[paper]
[code]
(2021-ACL, CCF-A) LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-Local Relations
[paper]
[code]
(2020-EMNLP, CCF-B) Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing
[paper]
[code]
(2020-ACL, CCF-A) TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data
[paper]
[code]
(2020-ACL, CCF-A) RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers
[paper]
[code]
(2020-EMNLP, CCF-B) Mention Extraction and Linking for SQL Query Generation
[paper]
(2020-EMNLP, CCF-B) IGSQL: Database Schema Interaction Graph Based Neural Model for Context-Dependent Text-to-SQL Generation
[paper]
[code]
(2020-arXiv, None) Hybrid Ranking Network for Text-to-SQL
[paper]
[code]
(2019-arXiv, None) X-SQL: reinforce schema representation with context
[paper]
(2019-EMNLP, CCF-B) Global Reasoning over Database Structures for Text-to-SQL Parsing
[paper]
[code]
(2019-EMNLP, CCF-B) Editing-Based SQL Query Generation for Cross-Domain Context-Dependent Questions
[paper]
[code]
(2019-ACL, CCF-A) Representing Schema Structure with Graph Neural Networks for Text-to-SQL Parsing
[paper]
[code]
(2019-ACL, CCF-A) Towards Complex Text-to-SQL in Cross-Domain Database with Intermediate Representation
[paper]
[code]
(2018-EMNLP, CCF-B) SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-DomainText-to-SQL Task
[paper]
[code]
(2018-NAACL, CCF-B) TypeSQL: Knowledge-based Type-Aware Neural Text-to-SQL Generation
[paper]
[code]
(2017-arXiv, None) SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning
[paper]
[code]
参考链接
Awesome Text2SQL:https://github.com/eosphoros-ai/Awesome-Text2SQL/blob/main/README.zh.md
更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。