赞
踩
练习赛地址:https://www.heywhale.com/home/activity/detail/611cbe90ba12a0001753d1e9/content
notebook地址:https://www.heywhale.com/mw/project/6151ca6107bcea0017fd0ea4
此练习赛情感分类位13类,故得分较低。。。。。。
Twitter 的推文有许多特点,首先,与 Facebook 不同的是,推文是基于文本的,可以通过 Twitter 接口注册下载,便于作为自然语言处理所需的语料库。其次,Twitter 规定了每一个推文不超过 140 个字,实际推文中的文本长短不一、长度一般较短,有些只有一个句子甚至一个短语,这对其开展情感分类标注带来许多困难。再者,推文常常是随性所作,内容中包含情感的元素较多,口语化内容居多,缩写随处都在,并且使用了许多网络用语,情绪符号、新词和俚语随处可见。因此,与正式文本非常不同。如果采用那些适合处理正式文本的情感分类方法来对 Twitter 推文进行情感分类,效果将不尽人意。
公众情感在包括电影评论、消费者信心、政治选举、股票走势预测等众多领域发挥着越来越大的影响力。面向公共媒体内容开展情感分析是分析公众情感的一项基础工作。
数据集基于推特用户发表的推文数据集,并且针对部分字段做出了一定的调整,所有的字段信息请以本练习赛提供的字段信息为准
字段信息内容参考如下:
其中训练集train.csv包含3w条数据,字段包括tweet_id,content,label;测试集test.csv包含1w条数据,字段包括tweet_id,content。
tweet_id,content,label
tweet_1,Layin n bed with a headache ughhhh...waitin on your call...,1
tweet_2,Funeral ceremony...gloomy friday...,1
tweet_3,wants to hang out with friends SOON!,2
tweet_4,"@dannycastillo We want to trade with someone who has Houston tickets, but no one will.",3
tweet_5,"I should be sleep, but im not! thinking about an old friend who I want. but he's married now. damn, & he wants me 2! scandalous!",1
tweet_6,Hmmm.
http://www.djhero.com/ is down,4
tweet_7,@charviray Charlene my love. I miss you,1
tweet_8,cant fall asleep,3
!head /home/mw/input/Twitter4903/train.csv
tweet_id,content,label
tweet_0,@tiffanylue i know i was listenin to bad habit earlier and i started freakin at his part =[,0
tweet_1,Layin n bed with a headache ughhhh...waitin on your call...,1
tweet_2,Funeral ceremony...gloomy friday...,1
tweet_3,wants to hang out with friends SOON!,2
tweet_4,"@dannycastillo We want to trade with someone who has Houston tickets, but no one will.",3
tweet_5,"I should be sleep, but im not! thinking about an old friend who I want. but he's married now. damn, & he wants me 2! scandalous!",1
tweet_6,Hmmm. http://www.djhero.com/ is down,4
tweet_7,@charviray Charlene my love. I miss you,1
tweet_8,cant fall asleep,3
!head /home/mw/input/Twitter4903/test.csv
tweet_id,content
tweet_0,Re-pinging @ghostridah14: why didn't you go to prom? BC my bf didn't like my friends
tweet_1,@kelcouch I'm sorry at least it's Friday?
tweet_2,The storm is here and the electricity is gone
tweet_3,So sleepy again and it's not even that late. I fail once again.
tweet_4,"Wondering why I'm awake at 7am,writing a new song,plotting my evil secret plots muahahaha...oh damn it,not secret anymore"
tweet_5,I ate Something I don't know what it is... Why do I keep Telling things about food
tweet_6,so tired and i think i'm definitely going to get an ear infection. going to bed "early" for once.
tweet_7,It is so annoying when she starts typing on her computer in the middle of the night!
tweet_8,Screw you @davidbrussee! I only have 3 weeks...
!head /home/mw/input/Twitter4903/submission.csv
tweet_id,label
tweet_0,0
tweet_1,0
tweet_2,0
tweet_3,0
tweet_4,0
tweet_5,0
tweet_6,0
tweet_7,0
tweet_8,0
# 环境准备 (建议gpu环境,速度好。pip install paddlepaddle-gpu)
!pip install paddlepaddle
!pip install -U paddlenlp
# 自定义PaddleNLP dataset的read方法
import pandas as pd
train = pd.read_csv('/home/mw/input/Twitter4903/train.csv')
test = pd.read_csv('/home/mw/input/Twitter4903/test.csv')
sub = pd.read_csv('/home/mw/input/Twitter4903/submission.csv')
print('最大内容长度 %d'%(max(train['content'].str.len())))
最大内容长度 166
# 定义读取函数
def read(pd_data):
for index, item in pd_data.iterrows():
yield {
'text': item['content'], 'label': item['label'], 'qid': item['tweet_id'].strip('tweet_')}
# 分割训练集、测试机
from paddle.io import Dataset, Subset
from paddlenlp.datasets import MapDataset
from paddlenlp.datasets import load_dataset
dataset = load_dataset(read, pd_data=train,lazy=False)
dev_ds = Subset(dataset=dataset, indices=[i for i in range(len(dataset)) if i % 5== 1])
train_ds = Subset(dataset=dataset, indices=[i for i in range(len(dataset)) if i % 5 != 1])
# 查看训练集
for i in range(5):
print(train_ds[i])
{'text': '@tiffanylue i know i was listenin to bad habit earlier and i started freakin at his part =[', 'label': 0, 'qid': '0'}
{'text': 'Funeral ceremony...gloomy friday...', 'label': 1, 'qid': '2'}
{'text': 'wants to hang out with friends SOON!', 'label': 2, 'qid': '3'}
{'text': '@dannycastillo We want to trade with someone who has Houston tickets, but no one will.', 'label': 3, 'qid': '4'}
{'text': "I should be sleep, but im not! thinking about an old friend who I want. but he's married now. damn, & he wants me 2! scandalous!", 'label': 1, 'qid': '5'}
# 在转换为MapDataset类型
train_ds = MapDataset(train_ds)
dev_ds = MapDataset(dev_ds)
print(len(train_ds))
print(len(dev_ds))
24000
6000
近年来,大量的研究表明基于大型语料库的预训练模型(Pretrained Models, PTM)可以学习通用的语言表示,有利于下游NLP任务,同时能够避免从零开始训练模型。随着计算能力的发展,深度模型的出现(即 Transformer)和训练技巧的增强使得 PTM 不断发展,由浅变深。
情感预训练模型SKEP(Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis)。SKEP利用情感知识增强预训练模型, 在14项中英情感分析典型任务上全面超越SOTA,此工作已经被ACL 2020录用。SKEP是百度研究团队提出的基于情感知识增强的情感预训练算法,此算法采用无监督方法自动挖掘情感知识,然后利用情感知识构建预训练目标,从而让机器学会理解情感语义。SKEP为各类情感分析任务提供统一且强大的情感语义表示。
论文地址:https://arxiv.org/abs/2005.05635
百度研究团队在三个典型情感分析任务,句子级情感分类(Sentence-level Sentiment Classification),评价目标级情感分类
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。