当前位置:   article > 正文

昇思25天学习打卡营第1天|昇思快速入门学习

昇思25天学习打卡营第1天

High-Level Python API

第一层为高阶API,其在中阶API的基础上又提供了训练推理的管理、混合精度训练、调试调优等高级接口,方便用户控制整网的执行流程和实现神经网络的训练推理及调优。例如用户使用Model接口,指定要训练的神经网络模型和相关的训练设置,对神经网络模型进行训练。

Medium-Level Python API

第二层为中阶API,其封装了低阶API,提供网络层、优化器、损失函数等模块,用户可通过中阶API灵活构建神经网络和控制执行流程,快速实现模型算法逻辑。例如用户可调用Cell接口构建神经网络模型和计算逻辑,通过使用Loss模块和Optimizer接口为神经网络模型添加损失函数和优化方式,利用Dataset模块对数据进行处理以供模型的训练和推导使用。

Low-Level Python API

第三层为低阶API,主要包括张量定义、基础算子、自动微分等模块,用户可使用低阶API轻松实现张量定义和求导计算。例如用户可通过Tensor接口自定义张量,使用grad接口计算函数在指定处的导数。

快速入门

通过MindSpore的API来快速实现一个简单的深度学习模型。若想要深入了解MindSpore的使用方法。

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
  • 1
  • 2
  • 3
  • 4

处理数据集

MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理,使用Mnist数据集,自动下载完成后,使用mindspore.dataset提供的数据变换进行预处理。

本章节中的示例代码依赖download,可使用命令pip install download安装。如本文档以Notebook运行时,完成安装后需要重启kernel才能执行后续代码。

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)

file_sizes: 100%|██████████████████████████| 10.8M/10.8M [00:01<00:00, 6.73MB/s]
Extracting zip file…
Successfully downloaded / unzipped to ./

MNIST数据集目录结构如下:

MNIST_Data
└── train
    ├── train-images-idx3-ubyte (60000个训练图片)
    ├── train-labels-idx1-ubyte (60000个训练标签)
└── test
    ├── t10k-images-idx3-ubyte (10000个测试图片)
    ├── t10k-labels-idx1-ubyte (10000个测试标签)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

数据下载完成后,获得数据集对象。

train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')
  • 1
  • 2

打印数据集中包含的数据列名,用于dataset的预处理。

print(train_dataset.get_col_names())
  • 1

[‘image’, ‘label’]

MindSpore的dataset使用数据处理流水线(Data Processing Pipeline),需指定map、batch、shuffle等操作。这里我们使用map对图像数据及标签进行变换处理,将输入的图像缩放为1/255,根据均值0.1307和标准差值0.3081进行归一化处理,然后将处理好的数据集打包为大小为64的batch。

def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset
# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

可使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。

for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break
Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32
for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break
Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

网络构建

mindspore.nn类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承nn.Cell类,并重写__init__方法和construct方法。__init__包含所有网络层的定义,construct中包含数据(Tensor)的变换过程。

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
print(model)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

模型训练

在模型训练中,一个完整的训练过程(step)需要实现以下三步:

  • 正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。
  • 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
  • 参数优化:将梯度更新到参数上。

MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:

  • 定义正向计算函数。
  • 使用value_and_grad通过函数变换获得梯度计算函数。
  • 定义训练函数,使用set_train设置为训练模式,执行正向计算、反向传播和参数优化。
# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)

# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

除训练外,我们定义测试函数,用来评估模型的性能。

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。

epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

Epoch 1

loss: 2.302088 [ 0/938]
loss: 2.290692 [100/938]
loss: 2.266338 [200/938]
loss: 2.205240 [300/938]
loss: 1.907198 [400/938]
loss: 1.455603 [500/938]
loss: 0.861103 [600/938]
loss: 0.767219 [700/938]
loss: 0.422253 [800/938]
loss: 0.513922 [900/938]
Test:
Accuracy: 83.8%, Avg loss: 0.529534

Epoch 2

loss: 0.580867 [ 0/938]
loss: 0.479347 [100/938]
loss: 0.677991 [200/938]
loss: 0.550141 [300/938]
loss: 0.226565 [400/938]
loss: 0.314738 [500/938]
loss: 0.298739 [600/938]
loss: 0.459540 [700/938]
loss: 0.332978 [800/938]
loss: 0.406709 [900/938]
Test:
Accuracy: 90.2%, Avg loss: 0.334828

Epoch 3

loss: 0.461890 [ 0/938]
loss: 0.242303 [100/938]
loss: 0.281414 [200/938]
loss: 0.207835 [300/938]
loss: 0.206000 [400/938]
loss: 0.409646 [500/938]
loss: 0.193608 [600/938]
loss: 0.217575 [700/938]
loss: 0.212817 [800/938]
loss: 0.202862 [900/938]
Test:
Accuracy: 91.9%, Avg loss: 0.280962

保存模型

模型训练完成后,需要将其参数进行保存。

# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")
Saved Model to model.ckpt
  • 1
  • 2
  • 3
  • 4

加载模型

加载保存的权重分为两步:

  • 重新实例化模型对象,构造模型。
  • 加载模型参数,并将其加载至模型上。
# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
[]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功,加载后的模型可以直接用于预测推理。

model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break
Predicted: "[3 9 6 1 6 7 4 5 2 2]", Actual: "[3 9 6 1 6 7 4 5 2 2]"
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

打卡图片

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Guff_9hys/article/detail/906754
推荐阅读
相关标签
  

闽ICP备14008679号