当前位置:   article > 正文

YOLOv8改进 | 图像去雾 | 特征融合注意网络FFA-Net增强YOLOv8对于模糊图片检测能力(北大和北航联合提出)_yolov8烟雾检测需求难点解决拓展优化创新

yolov8烟雾检测需求难点解决拓展优化创新

一、本文介绍

本文给大家带来的改进机制是由北大和北航联合提出的FFA-net: Feature Fusion Attention Network for Single Image Dehazing图像增强去雾网络,该网络的主要思想是利用特征融合注意力网络(Feature Fusion Attention Network)直接恢复无雾图像,FFA-Net通过特征注意力机制和特征融合注意力结构的创新设计,有效地提升了单图像去雾技术的性能。通过巧妙地结合通道和像素注意力,以及局部残差学习,网络能够更加精准地处理不同区域的雾霾,实现了在细节保留和色彩保真度上的显著提升。

 欢迎大家订阅我的专栏一起学习YOLO! 

专栏目录:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/358328
推荐阅读
相关标签
  

闽ICP备14008679号