赞
踩
概念
通过数值比较、范围过滤等就可以完成绝大多数我们需要的查询,但是,如果希望通过关键字的匹配来进行查询过滤,那么就需要基于相似度的查询,而不是原来的精确数值比较。全文索引就是为这种场景设计的。
你可能会说,用 like + % 就可以实现模糊匹配了,为什么还要全文索引?like + % 在文本比较少时是合适的,但是对于大量的文本数据检索,是不可想象的。全文索引在大量的数据面前,能比 like + % 快 N 倍,速度不是一个数量级,但是全文索引可能存在精度问题。
你可能没有注意过全文索引,不过至少应该对一种全文索引技术比较熟悉:各种的搜索引擎。虽然搜索引擎的索引对象是超大量的数据,并且通常其背后都不是关系型数据库,不过全文索引的基本原理是一样的。
版本支持
开始之前,先说一下全文索引的版本、存储引擎、数据类型的支持情况
MySQL 5.6 以前的版本,只有 MyISAM 存储引擎支持全文索引;
MySQL 5.6 及以后的版本,MyISAM 和 InnoDB 存储引擎均支持全文索引;
只有字段的数据类型为 char、varchar、text 及其系列才可以建全文索引。
测试或使用全文索引时,要先看一下自己的 MySQL 版本、存储引擎和数据类型是否支持全文索引。
操作全文索引
索引的操作随便一搜都是,这里还是再啰嗦一遍。
创建
创建表时创建全文索引
create table fulltext_test (
id int(11) NOT NULL AUTO_INCREMENT,
content text NOT NULL,
tag varchar(255),
PRIMARY KEY (id),
FULLTEXT KEY content_tag_fulltext(content,tag) // 创建联合全文索引列
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
在已存在的表上创建全文索引
create fulltext index content_tag_fulltext on fulltext_test(content,tag);
通过 SQL 语句 ALTER TABLE 创建全文索引
alter table fulltext_test add fulltext index content_tag_fulltext(content,tag);
修改
修改个 O,直接删掉重建。
删除
直接使用 DROP INDEX 删除全文索引
drop index content_tag_fulltext on fulltext_test;
通过 SQL 语句 ALTER TABLE 删除全文索引
alter table fulltext_test drop index content_tag_fulltext;
使用全文索引
和常用的模糊匹配使用 like + % 不同,全文索引有自己的语法格式,使用 match 和 against 关键字,比如
select * from fulltext_test where match(content,tag) against('xxx xxx');
注意:match() 函数中指定的列必须和全文索引中指定的列完全相同,否则就会报错,无法使用全文索引,这是因为全文索引不会记录关键字来自哪一列。如果想要对某一列使用全文索引,请单独为该列创建全文索引。
测试全文索引
添加测试数据,有了上面的知识,就可以测试一下全文索引了。
首先创建测试表,插入测试数据
create table test (
id int(11) unsigned not null auto_increment,
content text not null,
primary key(id),
fulltext key content_index(content)
) engine=MyISAM default charset=utf8;
insert into test (content) values ('a'),('b'),('c');
insert into test (content) values ('aa'),('bb'),('cc');
insert into test (content) values ('aaa'),('bbb'),('ccc');
insert into test (content) values ('aaaa'),('bbbb'),('cccc');
按照全文索引的使用语法执行下面查询
select * from test where match(content) against('a');
select * from test where match(content) against('aa');
select * from test where match(content) against('aaa');
根据我们的惯性思维,应该会显示 4 条记录才对,然而结果是 1 条记录也没有,只有在执行下面的查询时
select * from test where match(content) against('aaaa');
才会搜到 aaaa 这 1 条记录。
为什么?这个问题有很多原因,其中最常见的就是 最小搜索长度 导致的。另外插一句,使用全文索引时,测试表里至少要有 4 条以上的记录,否则,会出现意想不到的结果。
MySQL 中的全文索引,有两个变量,最小搜索长度和最大搜索长度,对于长度小于最小搜索长度和大于最大搜索长度的词语,都不会被索引。通俗点就是说,想对一个词语使用全文索引搜索,那么这个词语的长度必须在以上两个变量的区间内。
这两个的默认值可以使用以下命令查看
show variables like '%ft%';
可以看到这两个变量在 MyISAM 和 InnoDB 两种存储引擎下的变量名和默认值
// MyISAM
ft_min_word_len = 4;
ft_max_word_len = 84;
// InnoDB
innodb_ft_min_token_size = 3;
innodb_ft_max_token_size = 84;
可以看到最小搜索长度 MyISAM 引擎下默认是 4,InnoDB 引擎下是 3,也即,MySQL 的全文索引只会对长度大于等于 4 或者 3 的词语建立索引,而刚刚搜索的只有 aaaa 的长度大于等于 4。
配置最小搜索长度
全文索引的相关参数都无法进行动态修改,必须通过修改 MySQL 的配置文件来完成。修改最小搜索长度的值为 1,首先打开 MySQL 的配置文件 /etc/my.cnf,在 [mysqld] 的下面追加以下内容
[mysqld]
innodb_ft_min_token_size = 1
ft_min_word_len = 1
然后重启 MySQL 服务器,并修复全文索引。注意,修改完参数以后,一定要修复下索引,不然参数不会生效。
两种修复方式,可以使用下面的命令修复
repair table test quick;
或者直接删掉重新建立索引,再次执行上面的查询,a、aa、aaa 就都可以查出来了。
但是,这里还有一个问题,搜索关键字 a 时,为什么 aa、aaa、aaaa 没有出现结果中,讲这个问题之前,先说说两种全文索引。
两种全文索引
自然语言的全文索引
默认情况下,或者使用 in natural language mode 修饰符时,match() 函数对文本集合执行自然语言搜索,上面的例子都是自然语言的全文索引。
自然语言搜索引擎将计算每一个文档对象和查询的相关度。这里,相关度是基于匹配的关键词的个数,以及关键词在文档中出现的次数。在整个索引中出现次数越少的词语,匹配时的相关度就越高。相反,非常常见的单词将不会被搜索,如果一个词语的在超过 50% 的记录中都出现了,那么自然语言的搜索将不会搜索这类词语。上面提到的,测试表中必须有 4 条以上的记录,就是这个原因。
这个机制也比较好理解,比如说,一个数据表存储的是一篇篇的文章,文章中的常见词、语气词等等,出现的肯定比较多,搜索这些词语就没什么意义了,需要搜索的是那些文章中有特殊意义的词,这样才能把文章区分开。
布尔全文索引
在布尔搜索中,我们可以在查询中自定义某个被搜索的词语的相关性,当编写一个布尔搜索查询时,可以通过一些前缀修饰符来定制搜索。
MySQL 内置的修饰符,上面查询最小搜索长度时,搜索结果 ft_boolean_syntax 变量的值就是内置的修饰符,下面简单解释几个,更多修饰符的作用可以查手册
+ 必须包含该词
- 必须不包含该词
> 提高该词的相关性,查询的结果靠前
< 降低该词的相关性,查询的结果靠后
(*)星号 通配符,只能接在词后面
对于上面提到的问题,可以使用布尔全文索引查询来解决,使用下面的命令,a、aa、aaa、aaaa 就都被查询出来了。
select * test where match(content) against('a*' in boolean mode);
总结
好了,差不多写完了,又到了总结的时候。
MySQL 的全文索引最开始仅支持英语,因为英语的词与词之间有空格,使用空格作为分词的分隔符是很方便的。亚洲文字,比如汉语、日语、汉语等,是没有空格的,这就造成了一定的限制。不过 MySQL 5.7.6 开始,引入了一个 ngram 全文分析器来解决这个问题,并且对 MyISAM 和 InnoDB 引擎都有效。
事实上,MyISAM 存储引擎对全文索引的支持有很多的限制,例如表级别锁对性能的影响、数据文件的崩溃、崩溃后的恢复等,这使得 MyISAM 的全文索引对于很多的应用场景并不适合。所以,多数情况下的建议是使用别的解决方案,例如 Sphinx、Lucene 等等第三方的插件,亦或是使用 InnoDB 存储引擎的全文索引。
几个注意点
1:使用全文索引前,搞清楚版本支持情况;
2:全文索引比 like + % 快 N 倍,但是可能存在精度问题;
3:如果需要全文索引的是大量数据,建议先添加数据,再创建索引;
4:对于中文,可以使用 MySQL 5.7.6 之后的版本,或者第三方插件。
5:全文索引支持char、varchar、text类型字符内容的搜索。
6:MySQL的全文索引只有全部在内存中的时候,性能才非常好。如果内存无法装载全部索引,那么性能可能会非常慢(可以为全文索引设置单独的键缓存(key cache),保证不会被其他的索引缓存挤出内存)
7:相比其它的索引类型,当insert、update和delete操作进行时,全文索引的操作代价非常大。而且全文索引会有更多的碎片,可能需要做更多的optimize table操作。
8:一旦使用了全文索引,即便这时有更合适的索引可用,MySQL也会放弃性能比较,置之不理。
9:全文索引不存储索引列的实际值,也就不可能用作索引覆盖扫描。
10:除了相关性排序,全文索引不能用作其他的排序。如果查询需要做相关性以外的排序操作,都需要使用文件排序。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。