赞
踩
antograd包是Pytorch中所有神经网络的核心。autograd为Tensor上的所有操作提供自动微分,它是一个由运行定义的框架,这意味着以代码运行方式定义后向传播,并且每一次迭代都可能不同
torch.Tensor是包的核心。
import torch
# 创建一个张量,设置requires_grad=True
x=torch.ones(2,2,requires_grad=True)
print(x)
# 针对张量操作
y=x+2
print(y)
print(y.grad_fn)#y作为操作的结果被创建,所以他有grad_fn
# 对y操作
z=y*y*3
out=z.mean()
print(z,out)
运行结果
# 如果在变量输入过程中没有提供相应参数,输入的标记默认为False,requires_grad_()会改变张量的requires_grad标记
a=torch.randn(2, 2)
a=((a*3)/(a-1))
# 前面没有设置requires_grad,固会输出False
print(a.requires_grad)
a.requires_grad_(True)
# 经过上面语句的更改之后,此处应该输出True
print(a.requires_grad)
b=(a*a).sum()
# 输出梯度信息
print(b.grad_fn)
运行结果
现在向后传播,因为输出包含了一个标量,out,backward()等同于out.backward(torch.tensor(1,))
out.backward()#向后传播
print(x.grad)#打印梯度
运行结果
原理
# 雅克比向量积 x=torch.randn(3,requires_grad=True) y=x*2 print(y) while y.data.norm()<1000: y=y*2 print(y)#此时y不是标量,torch.autograd 不能够直接计算整个雅可比,但是如果我们只想要雅可比向量积,只需要简单的传递向量给 backward 作为参数 v=torch.tensor([0.1,1.0,0.0001],dtype=torch.float) y.backward(v) print(x.grad) print(x.requires_grad) print((x**2).requires_grad) # 使用一下语句停止从跟踪历史中.require_gra=True的张量自动求导 with torch.no_grad(): print((x**2).requires_grad)
运行结果
明天见呀~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。