当前位置:   article > 正文

预测房价:人工智能回归问题_“橙现智能”房价预测模型说明

“橙现智能”房价预测模型说明

​我们之前提出了三个经典的问题,他们分别是:

  1. 二分类问题(电影评论好坏倾向性判断)
  2. 多分类问题(将新闻按照主题分类)
  3. 回归问题(根据房地产数据估算房地产价格)

我们解决了前两个问题,今天我们解决第三个问题,回归问题。

不管是二分类问题还是多分类问题,归结起来都是分类问题,而回归问题不一样,他是一种回归问题,回归问题的训练结果不是离散的情况,而是连续的情况,例如预测明天的气温、全年降水量等。

这里我们引入的依旧是 Keras 内置的实际问题和数据集:预测波斯顿的房价。针对波士顿的不同房屋,我们给出对每个房屋我们给出十三个数据指标,包括房间数、犯罪率和高速公路可达性等,他们的取值范围不一致,0-1、1-12 或 1-100 等,训练的目标是一个连续的值——房屋的价格。具体的步骤如下分别说明:

  1. 从数据集中读取数据我们已经很熟悉了,但是我们观察数据会发现,这些数据的取值范围差别太大了,这会导致网络训练过程的失真,因此比较好的办法是我们先对数据进行预处理,预处理的方法是:(原数据 - 平均值) / 标准差,这就相当于对数据进行标准化,标准化后的数据平均值为 0,标准差为 1。mean 和 std 方法分别是求平均值和计算标准差。

  2. 因为我们这一次的数据量只有五百多个,因此我们采用较小的网络,两个隐藏层。这里我们需要注意的一点是数据量少,训练容易产生过拟合,小型网络更适合。

  3. 我们仍然可以用之前的方法进行训练集与反馈集的划分,但问题是由于我们的数据量太小了,因此具体如何划分反馈集过于随机,这会对最后的结果有很大的影响,因此我们采用的是 K 折交叉验证的方法。K 折交叉验证的含义是我们将数据集分为 K 份,每次从这 K 份中选择一份当做验证集,进行 K 次互相独立的训练,最后取 K 次训练的平均值。具体如图:
    image

  4. 我们画出训练 500 轮的图,可以看到最开始的一些数据不是好数据,我们把他们去掉,然后再绘制一张图,如下别是两次绘制的结果,又可以看到之前出现的问题——过拟合了,因此我们调整循环次数为 80 次
    image
    image

  5. 修改后的训练网络是一个可以接受的网络,我们在测试集上进行验证,整体基本可以达到要求。

到此,我们已经分别讨论文章开始提到的三个问题(包括前两篇文章),二分类问题、多分类问题和回归问题,这其中我们也遇到和解决了一些问题,下面总结如下:

  • 神经网络对数据的处理大多都需要转化为对数字的处理,因此对于文本等内容需要进行预处理;

  • 对于数据集的大小、特征的多少和特征值之间的差别等,考虑数据网络的大小,层数、数据的标准化和训练的迭代次数,此类问题往往也需要画图去观察和判断,最后需要根据调整的参数最终得到比较合适的网络模型;

  • 训练迭代次数不够和过拟合都是经常遇到的问题,都是不够好的训练网络,实际问题中需要对两种情况都进行评估和调整;

  • 损失函数和反馈函数的选取,需要考虑实际问题,根据数据的要求,进行选择;

接下来的文章,将进一步针对上面提到的这些问题进行更加系统的分析和研究。

#!/usr/bin/env python3

import time

import numpy as np
from keras import layers
from keras import models
from keras.datasets import boston_housing


def housing():
    global train_data

    (train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()
    # (404, 13)
    # print(train_data.shape)
    # (102, 13)
    # print(test_data.shape)
    # [15.2 42.3 50.  21.1 17.7 18.5 11.3 ... 19.4 19.4 29.1]
    # print(train_targets)

    # 平均值
    mean = train_data.mean(axis=0)
    train_data -= mean
    # 标准差
    std = train_data.std(axis=0)
    train_data /= std
    test_data -= mean
    test_data /= std

    k = 4
    num_val_samples = len(train_data) // k
    num_epochs = 500
    all_mae_histories = []
    for i in range(k):
        print('processing fold #', i)
        val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
        val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
        partial_train_data = np.concatenate(
            [train_data[:i * num_val_samples],
             train_data[(i + 1) * num_val_samples:]],
            axis=0)
        partial_train_targets = np.concatenate(
            [train_targets[:i * num_val_samples],
             train_targets[(i + 1) * num_val_samples:]],
            axis=0)
        model = build_model()
        model.fit(train_data, train_targets,
                  epochs=80, batch_size=16, verbose=0)
        test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)
        # history = model.fit(partial_train_data, partial_train_targets,
        #                     validation_data=(val_data, val_targets),
        #                     epochs=num_epochs, batch_size=1, verbose=0)
        # mae_history = history.history['val_mean_absolute_error']
        # all_mae_histories.append(mae_history)

    # average_mae_history = [
    #     np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]
    #
    # plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
    # plt.xlabel('Epochs')
    # plt.ylabel('Validation MAE')
    # plt.show()
    #
    # smooth_mae_history = smooth_curve(average_mae_history[10:])
    # plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
    # plt.xlabel('Epochs')
    # plt.ylabel('Validation MAE')
    # plt.show()


def build_model():
    model = models.Sequential()
    model.add(layers.Dense(64, activation='relu',
                           input_shape=(train_data.shape[1],)))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(1))
    model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
    return model


def smooth_curve(points, factor=0.9):
    smoothed_points = []
    for point in points:
        if smoothed_points:
            previous = smoothed_points[-1]
            smoothed_points.append(previous * factor + point * (1 - factor))
        else:
            smoothed_points.append(point)
    return smoothed_points


def smooth_curve(points, factor=0.9):
    smoothed_points = []
    for point in points:
        if smoothed_points:
            previous = smoothed_points[-1]
            smoothed_points.append(previous * factor + point * (1 - factor))
        else:
            smoothed_points.append(point)
    return smoothed_points


if __name__ == "__main__":
    time_start = time.time()
    housing()
    time_end = time.time()
    print('Time Used: ', time_end - time_start)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/374331
推荐阅读
相关标签
  

闽ICP备14008679号