赞
踩
错误原因:
使用 sklearn.metrics 中的 roc_auc_score 方法计算AUC时,出现了该错误;然而计算AUC时需要分类数据的任一类都有足够的数据;但问题是,有时测试数据中只包含 0,而不包含 1;于是由于数据集不平衡引起该错误;
解决办法:
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 0, 0])
y_scores = np.array([1, 0, 0, 0])
try:
roc_auc_score(y_true, y_scores) ## y_true=ground_truth
except ValueError:
pass
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。