赞
踩
爬取链家深圳全部二手房的详细信息,并将爬取的数据存储到CSV文件中
class LianjiaSpider(object):
def __init__(self):
def getMaxPage(self, url): # 获取maxPage
def parsePage(self, url): # 解析每个page,获取每个huose的Link
def parseDetail(self, url): # 根据Link,获取每个house的详细信息
(3) init(self)初始化函数
def __init__(self):
self.headers = {"User-Agent": UserAgent().random}
self.datas = list()
主要用来获取二手房页面的最大页数.
'''
遇到不懂的问题?Python学习交流群:1136201545满足你的需求,资料都已经上传群文件,可以自行下载!
'''
def getMaxPage(self, url):
response = requests.get(url, headers = self.headers)
if response.status_code == 200:
source = response.text
soup = BeautifulSoup(source, "html.parser")
pageData = soup.find("div", class_ = "page-box house-lst-page-box")["page-data"]
# pageData = '{"totalPage":100,"curPage":1}',通过eval()函数把字符串转换为字典
maxPage = eval(pageData)["totalPage"]
return maxPage
else:
print("Fail status: {}".format(response.status_code))
return None
(5)parsePage()函数
主要是用来进行翻页的操作,得到每一页的所有二手房的Links链接。它通过利用一个for循环来重构 url实现翻页操作,而循环最大页数就是通过上面的 getMaxPage() 来获取到。
def parsePage(self, url):
maxPage = self.getMaxPage(url)
# 解析每个page,获取每个二手房的链接
for pageNum in range(1, maxPage+1 ):
url = "https://sz.lianjia.com/ershoufang/pg{}/".format(pageNum)
print("当前正在爬取: {}".format(url))
response = requests.get(url, headers = self.headers)
soup = BeautifulSoup(response.text, "html.parser")
links = soup.find_all("div", class_ = "info clear")
for i in links:
link = i.find("a")["href"] #每个<info clear>标签有很多<a>,而我们只需要第一个,所以用find
detail = self.parseDetail(link)
self.datas.append(detail)
(6)parseDetail()函数
根据parsePage()函数获取的二手房Link链接,向该链接发送请求,获取出详细页面信息。
def parseDetail(self, url): response = requests.get(url, headers = self.headers) detail = {} if response.status_code == 200: soup = BeautifulSoup(response.text, "html.parser") detail["价格"] = soup.find("span", class_ = "total").text detail["单价"] = soup.find("span", class_ = "unitPriceValue").text detail["小区"] = soup.find("div", class_ = "communityName").find("a", class_ = "info").text detail["位置"] = soup.find("div", class_="areaName").find("span", class_="info").text detail["地铁"] = soup.find("div", class_="areaName").find("a", class_="supplement").text base = soup.find("div", class_ = "base").find_all("li") # 基本信息 detail["户型"] = base[0].text[4:] detail["面积"] = base[2].text[4:] detail["朝向"] = base[6].text[4:] detail["电梯"] = base[10].text[4:] return detail else: return None
(7)将数据存储到CSV文件中
这里用到了 pandas 库的 DataFrame() 方法,它默认的是按照列名的字典顺序排序的。想要自定义列的顺序,可以加columns字段。
# 将所有爬取的二手房数据存储到csv文件中
data = pd.DataFrame(self.datas)
# columns字段:自定义列的顺序(DataFrame默认按列名的字典序排序)
columns = ["小区", "户型", "面积", "价格", "单价", "朝向", "电梯", "位置", "地铁"]
data.to_csv(".\Lianjia_II.csv", encoding='utf_8_sig', index=False, columns=columns)
import requests from bs4 import BeautifulSoup import pandas as pd from fake_useragent import UserAgent ''' 遇到不懂的问题?Python学习交流群:1136201545满足你的需求,资料都已经上传群文件,可以自行下载! ''' class LianjiaSpider(object): def __init__(self): self.headers = {"User-Agent": UserAgent().random} self.datas = list() def getMaxPage(self, url): response = requests.get(url, headers = self.headers) if response.status_code == 200: source = response.text soup = BeautifulSoup(source, "html.parser") pageData = soup.find("div", class_ = "page-box house-lst-page-box")["page-data"] # pageData = '{"totalPage":100,"curPage":1}',通过eval()函数把字符串转换为字典 maxPage = eval(pageData)["totalPage"] return maxPage else: print("Fail status: {}".format(response.status_code)) return None def parsePage(self, url): maxPage = self.getMaxPage(url) # 解析每个page,获取每个二手房的链接 for pageNum in range(1, maxPage+1 ): url = "https://sz.lianjia.com/ershoufang/pg{}/".format(pageNum) print("当前正在爬取: {}".format(url)) response = requests.get(url, headers = self.headers) soup = BeautifulSoup(response.text, "html.parser") links = soup.find_all("div", class_ = "info clear") for i in links: link = i.find("a")["href"] #每个<info clear>标签有很多<a>,而我们只需要第一个,所以用find detail = self.parseDetail(link) self.datas.append(detail) # 将所有爬取的二手房数据存储到csv文件中 data = pd.DataFrame(self.datas) # columns字段:自定义列的顺序(DataFrame默认按列名的字典序排序) columns = ["小区", "户型", "面积", "价格", "单价", "朝向", "电梯", "位置", "地铁"] data.to_csv(".\Lianjia_II.csv", encoding='utf_8_sig', index=False, columns=columns) def parseDetail(self, url): response = requests.get(url, headers = self.headers) detail = {} if response.status_code == 200: soup = BeautifulSoup(response.text, "html.parser") detail["价格"] = soup.find("span", class_ = "total").text detail["单价"] = soup.find("span", class_ = "unitPriceValue").text detail["小区"] = soup.find("div", class_ = "communityName").find("a", class_ = "info").text detail["位置"] = soup.find("div", class_="areaName").find("span", class_="info").text detail["地铁"] = soup.find("div", class_="areaName").find("a", class_="supplement").text base = soup.find("div", class_ = "base").find_all("li") # 基本信息 detail["户型"] = base[0].text[4:] detail["面积"] = base[2].text[4:] detail["朝向"] = base[6].text[4:] detail["电梯"] = base[10].text[4:] return detail else: return None if __name__ == "__main__": Lianjia = LianjiaSpider() Lianjia.parsePage("https://sz.lianjia.com/ershoufang/")
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。