赞
踩
在当今科技日新月异的浪潮中,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)与深度学习(Deep Learning, DL)如同璀璨星辰,引领着信息技术的新浪潮。这三个词汇频繁出现在各种前沿讨论和实际应用中,但对于许多初涉此领域的探索者来说,它们的具体含义及相互之间的内在联系可能仍笼罩着一层神秘面纱。
那让我们先来看看这张图。
由此可见,深度学习、机器学习、人工智能三者之间有着层层递进的紧密联系,深度学习是机器学习的一个分支,而机器学习是人工智能的一个分支。
人工智能(Artificial Intelligence, AI)是一个笼统且宽泛的概念,它的终极目标即是构建能够模拟、延伸乃至超越人类智能的计算系统。具体应用在以下领域:
图像识别(Image Recognition)是AI的一个重要分支,致力于研究如何使计算机通过视觉传感器获取数据,并基于这些数据进行分析以识别图像中的物体、场景、行为等信息,模拟人眼和大脑对视觉信号的认知和理解过程。
自然语言处理(Natural Language Processing, NLP)则是让计算机理解和生成人类自然语言的能力,涵盖了诸如文本分类、语义解析、机器翻译等多种任务,力图模拟人类在听说读写等方面的智能行为。
计算机视觉(Computer Vision, CV)更广义地包含了图像识别,它还涉及到图像分析、视频分析、三维重建等多个方面,旨在让计算机从二维或三维图像中“看见”并理解世界,这是对人类视觉系统的深层次模仿。
知识图谱(Knowledge Graph, KG)则是一种结构化的、用于存储和表示实体及其相互间复杂关系的数据模型,它模拟的是人类在认知过程中积累和利用知识的能力,以及基于已有知识进行推理和学习的过程。
这些看似高端的技术确实都是围绕着“模拟人的智能”这一核心理念展开,只是针对不同的感知维度(如视觉、听觉、思考逻辑等)进行了专项研究与应用开发,共同推动着人工智能技术的发展和进步。
机器学习(Machine Learning, ML)是AI的一个重要分支,它通过让计算机系统基于一些算法从数据中自动“学习”规律和模式,并据此进行预测或决策,从而模拟、延伸和扩展了人类智能。
例如,在训练一个猫识别模型时,机器学习处理的过程如下:
数据预处理:首先,对收集到的大量猫和非猫图片进行预处理,包括缩放尺寸、灰度化、归一化等操作,并将图片转换为特征向量表示,这些特征可能来自于手动设计的特征提取技术,比如Haar-like特征、局部二进制模式(LBP)或其他计算机视觉领域常用的特征描述子。
特征选择与降维:根据问题特点选择关键特征,去除冗余和无关信息,有时还会使用PCA、LDA等降维方法进一步减少特征维度,提高算法效率。
模型训练:接着用预处理过的带有标签的数据集来训练选定的机器学习模型,通过调整模型参数优化模型性能,使得模型能够在给定特征的情况下区分出猫和非猫的图片。
模型评估与验证:训练完成后,使用独立的测试集对模型进行评估,以确保模型具有良好的泛化能力,能够准确地应用于未见过的新样本。
常用的10大机器学习算法有:决策树、随机森林、逻辑回归、SVM、朴素贝叶斯、K最近邻算法、K均值算法、Adaboost算法、神经网络、马尔科夫等。
深度学习(Deep Learning, DL)则又是机器学习的一种特殊形式,它主要依赖于深层神经网络结构来模拟人脑处理信息的方式,并自动从数据中提取复杂的特征表示。
例如,在训练一个猫识别模型时,深度学习处理的过程如下:
深度学习和机器学习的区别在于:
机器学习算法通常依赖于人为设计的特征工程,即根据问题背景知识预先抽取关键特征,然后基于这些特征构建模型并进行优化求解。
深度学习则采取了端到端的学习方式,通过多层非线性变换自动生成高级抽象特征,并且这些特征是在整个训练过程中不断优化得到的,无需手动选择和构造特征,更接近于人类大脑的认知处理方式。
举个例子,如果你要写一个软件让它去识别一辆轿车,如果使用机器学习,你需要人为提取汽车的特征,比如大小和形状等;而如果你使用深度学习,那么人工智能神经网络会自行提取这些特征,不过它需要大量的标识为轿车的图片来进行学习。
2. 应用场景
机器学习在指纹识别、特征物体检测等领域的应用基本达到了商业化的要求。
深度学习主要应用于文字识别、人脸技术、语义分析、智能监控等领域。目前在智能硬件、教育、医疗等行业也在快速布局。
机器学习算法在小样本情况下也能展现出较好的性能,对于一些简单任务或者特征易于提取的问题,较少的数据即可达到满意效果。
深度学习通常需要大量的标注数据来训练深层神经网络,其优势在于能从原始数据中直接学习复杂的模式和表示,尤其当数据规模增大时,深度学习模型的性能提升更为显著。
训练阶段,由于深度学习模型的层次更多、参数数量庞大,故训练过程往往较为耗时,需要高性能计算资源的支持,如GPU集群。
相较之下,机器学习算法(尤其是那些轻量级的模型)在训练时间和计算资源需求上通常较小,更适合于快速迭代和实验验证。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。