当前位置:   article > 正文

分类算法matlab实例,数据挖掘之分类算法---knn算法(有matlab例子)

matlab knn分类

knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法.注意,不是聚类算法.所以这种分类算法

必然包括了训练过程.

然而和一般性的分类算法不同,knn算法是一种懒惰算法.它并非像其他的分类算法先通过训练建立分类模型.,而

是一种被动的分类过程.它是边测试边训练建立分类模型.

算法的一般描述过程如下:

1.首先计算每个测试样本点到其他每个点的距离.这个距离可以是欧氏距离,余弦距离等.

2.然后取出距离小于设定的距离阈值的点.这些点即为根据阈值环绕在测试样本最邻近的点.

3.选出这些邻近点中比例最大的点簇的类.那么就将概测试点归入此类.

注意:knn算法的开销很大,因为要计算每个样本点到其他所有点的距离.

knn算法的距离一般要根据实际样本点的情况来选取.

knn算法的距离阈值要根据样本的分散集中程度来选取.经验一般选取样本点集合的均方差.

下面是一个matlab中运用knn函数分类的例子.

clc;

clear;

load 'Train_Data.mat' %载入训练数据

load 'Train_Label.mat' %载入训练分类标签

test_data=[43;

42;

192;

193]; %测试数据

%knnclassify为matlab提供的knn分类函数.

%参数test_data是待分类的测试数据

%Train_Data是用于knn分类器训练的数据

%Train_Label是训练的分类标签

%3,即为knn的k值.意思是取某个待分类测试样本点周围三个样本点

%'cosine'---为距离度量,这里采用余弦距离

%'

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号