当前位置:   article > 正文

AI实战:文本自动摘要简述_专门写摘要的ai

专门写摘要的ai

文本自动摘要

两大分类

  • 抽取式摘要
  • 生成式摘要

1、抽取式摘要

分为无监督和有监督。

  • 无监督方法:
    (1)基于统计特征的tfidf
    (2)文本聚类
    (3)基于图特征的TextRank、LexRank
    (4)MMR,全称为Maximal Marginal Relevance,它的核心思想同时考虑了内容相关性和多样性
    (5)submodular(次模)函数

  • 有监督方法:
    (1)SummaRuNNer:基于RNN,词级别做RNN编码,句子级别做RNN编码,最后判断每个句子是否属于摘要句子。
    论文地址:SummaRuNNer: A Recurrent Neural Network based Sequence Model for Extractive Summarization of Documents

2、生成式摘要

大部分都是基于的seq2seq框架

中文语料库

Large Scale Chinese Short Text Summarization Dataset(LCSTS)
这是一个中文短文本摘要数据集,数据采集自新浪微博。

测评方法

  • Edmundson
    Edmundson评价方法比较简单,是通过比较自动文摘与目标文摘的句子重合率的高低来对系统摘要进行评价。

  • ROUGE
    ROUGE是由ISI的Lin和Hovy提出的一种自动摘要评价方法,是主流测评方法。

    ROUGE-N系列,其实就是以n-gram为基本单元,计算两个句子之间的n-gram重合率。每个ROUGE系列的计算结果又可以细分为precision,recall和f-beta分数。

    ROUGE-L是针对是最长公共子序列的重合率计算。

    ROGUE-W与ROUGE-L类似,不同的是考虑了连续最长公共子序列应该拥有更大的权重。

    ROUGE-S,基于的是skip-gram。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/970927
推荐阅读
相关标签
  

闽ICP备14008679号