当前位置:   article > 正文

二项分布_二项分布的分布律

二项分布的分布律

       

   说起二项分布(binomial distribution),不得不提的前提是伯努利试验(Bernoulli experiment)n次独立重复试验伯努利试验是在同样的条件下重复、相互独立进行的一种随机试验。

   伯努利试验的特点是

(1)每次试验事件只有两种结果:事件发生或者不发生,如硬币正面或反面,患病或没患病;

(2)每次试验中事件发生的概率是相同的,注意不一定是0.5

(3)n次试验的事件相互之间独立。

   举个实例,最简单的抛硬币试验就是伯努利试验,在一次试验中硬币要么正面朝上,要么反面朝上,每次正面朝上的概率都一样p=0.5,且每次抛硬币的事件相互独立,即每次正面朝上的概率不受其他试验的影响。如果独立重复抛n=10次硬币,正面朝上的次数k可能为0,1,2,3,4,5,6,7,8,9,10中的任何一个,那么k显然是一个随机变量,这里就称随机变量k服从二项分布

 

   

   我们推导下随机变量X=k的分布律。显然0<=k<=nn次抛硬币中获得k次正面,第1次正面在n次抛硬币中出现有n种方式,则第2次正面在n次抛硬币中出现有n-1种方式,以此类推,则出现的总可能方式是:n(n-1)...(n-k+1)种,如果我们并不考虑这k次正面出现的排列顺序,因此恰好出现k次的总可能性是n(n-1)...(n-k+1)/k!种,分子和分母同时乘以(n-k)!,则该式等于n/(k*(n-k)),也就是通常的组合公式C(n,k)=n/(k*(n-k))

        那么对于抛n次硬币,其中正面出现的次数是k,反面出现的次数必然为n-k次,不考虑顺序的情况下,则每一次恰好获得k次正面的概率是pk*(1-p)n-k,而n次试验中恰好出现k次正面的可能性是C(n,k)=n/(k*(n-k))种,因此,n次抛硬币中恰好出现k次的概率为

P(X=k) = C(n,k) * pk*(1-p)n-k

这就是二项分布的分布律,记作X~B(n,p),其中C(n,k)是组合数,在数学中也叫二项式系数,这就是二项分布名称的来历。判断某个随机变量X是否符合二项分布除了满足上述的伯努利试验外,关键是这个X是否表示事件发生的次数。二项分布的数学期望E(X)=n*p,方差D(X)=n*p*(1-p),具体证明可见《二项分布均值和方差的简单推导》。

   看一个示例:某人篮球投篮的命中率是0.3,总共投篮10次,问至少投中2次的概率?

分析:

(1)每次投篮有2种结果,投中或没投中;

(2)每次投篮的投中概率是相同的,都为0.3

(3)每次投篮可认为是独立事件。

 因此,符合二项分布。


投中次数的概率质量分布

   显然,二项分布属于离散型分布。

   至少2次投中概率即:P(X>=2)=P(X=2)+P(X=3)+P(X=4)+...+P(X=10)。

  1. import numpy as np
  2. import scipy.stats as sps
  3. n = 10
  4. p = 0.3
  5. k = np.arange(n + 1)
  6. PX = sps.binom.pmf(k, n, p)
  7. print(sum(PX[2:]))

输出结果:

0.85

   再看一个例子:某种疫苗注射后过敏反应的概率是0.08,问某社区卫生院在接种该疫苗100人后,少于3人有过敏反应的概率是多少?

采用上例中的分析方法,该问题也属于二项分布问题。少于3人有过敏反应,即求:

P(X<3)=P(X=0)+P(X=1)+P(X=2)=C(100,0)(0.08)0(0.02)100+C(100,1)(0.08)1(0.02)99+C(100,2)(0.08)2(0.02)98=0.01127=1.127%


   在实际应用中还有伯努利分布、两点分布、0-1分布等,它们与二项分布之间有什么关系呢?

         X~B(n,p)n = 1时,二项分布就变成了伯努利分布(Bernoulli distribution)伯努利分布又称为两点分布0-1分布”,或者说伯努利分布/两点分布/0-1分布是二项分布在n=1时的特例,即伯努利分布、两点分布、0-1分布这三种分布是同一个分布的不同名称,又都是二项分布在n=1时的特例。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Li_阴宅/article/detail/748960
推荐阅读
相关标签
  

闽ICP备14008679号