当前位置:   article > 正文

python粒子群算法包_python实现粒子群算法

粒子群算法包

粒子群算法

粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。

PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。

在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

i 表示第 i 个粒子, d 表示粒子的第 d 个维度。r1, r2 表示两个位于 [0, 1] 的随机数(对于一个粒子的不同维度,r1, r2 的值不同)。pbest[i] 是指粒子取得最高(低)适应度时的位置,gbest[i] 指的是整个系统取得最高(低)适应度时的位置。

实践

我们用 PSO 算法求解如下函数的最小值

可以在空间画出图像

下图是使用 5 个粒子的收敛情况

可以看到,fitness 在第 12 轮就几乎收敛到 -10.0。

下面是完整代码

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

INF = 1e5

def plot_cost_func():

"""画出适应度函数"""

fig = plt.figure()

ax = Axes3D(fig)

X = np.arange(-4, 4, 0.25)

Y = np.arange(-4, 4, 0.25)

X, Y = np.meshgrid(X, Y)

Z = (X**2 + Y**2) - 10

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')

plt.show()

def fitness(x):

return x[0]**2 + x[1]**2 - 10

class PSOSolver(object):

def __init__(self, n_iter, weight=0.5, c1=2, c2=2, n_particle=5):

self.n_iter = n_iter

self.weight = weight

self.c1 = c1

self.c2 = c2

self.n_particle = n_particle

self.gbest = np.random.rand(2)

# gbest 对应的函数值

self.gbest_fit = fitness(self.gbest)

# 将位置初始化到 [-5, 5]

self.location = 10 * np.random.rand(n_particle, 2) - 5

# 将速度初始化到 [-1, 1]

self.velocity = 2 * np.random.rand(n_particle, 2) - 1

self.pbest_fit = np.tile(INF, n_particle)

self.pbest = np.zeros((n_particle, 2))

# 记录每一步的最优值

self.best_fitness = []

def new_velocity(self, i):

r = np.random.rand(2, 2)

v = self.velocity[i]

x = self.location[i]

pbest = self.pbest[i]

return self.weight * v + self.c1 * r[0] * (pbest - x) + \

self.c2 * r[1] * (self.gbest - x)

def solve(self):

for it in range(self.n_iter):

for i in range(self.n_particle):

v = self.new_velocity(i)

x = self.location[i] + v

fit_i = fitness(x)

if fit_i < self.pbest_fit[i]:

self.pbest_fit[i] = fit_i

self.pbest[i] = x

if fit_i < self.gbest_fit:

self.gbest_fit = fit_i

self.gbest = x

self.velocity[i] = v

self.location[i] = x

self.best_fitness.append(self.gbest_fit)

if __name__ == '__main__':

plot_cost_func()

n_iter = 20

s = PSOSolver(n_iter)

s.solve()

print(s.gbest_fit)

plt.title("Fitness Curve")

plt.xlabel("iter")

plt.ylabel("fitness")

plt.plot(np.arange(n_iter), np.array(s.best_fitness))

plt.show()

以上就是python实现粒子群算法的详细内容,更多关于python 粒子群算法的资料请关注脚本之家其它相关文章!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Li_阴宅/article/detail/783552
推荐阅读
相关标签
  

闽ICP备14008679号