赞
踩
搞定算法,面试字节再不怕,有需要文章中分享的这些二叉树、链表、字符串、栈和队列等等各大面试高频知识点及解析
最后再分享一份终极手撕架构的大礼包(学习笔记):分布式+微服务+开源框架+性能优化
x86
,ARM,PowerPC;操作系统:Windows/Mac/Linux/Android)。小结一下:模型构建、模型训练和部署一条龙,兼容性强,多线程,跨平台(特别注意Android平台,支持端侧模型)?
Deeplearning4j实际上是一堆项目,旨在支持基于 JVM 的深度学习应用程序的所有需求。除了 Deeplearning4j 本身(高级 API),它还包括:
神经网络高层API库,用于构建具有各种层的多层神经网络(MultiLayerNetworks)和计算图(ComputationGraphs),支持从其他框架导入模型和在Apache Spark上进行分布式训练
ScalNet是受Keras启发而为Deeplearning4j开发的Scala语言包装。它通过Spark在多个GPU上运行。功能相当于Keras。
Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。
ND4J是Deeplearning4j的数值处理库和张量库,在JVM中实现Numpy的功能:
包含500多种数学、线性代数和神经网络操作。
SameDiff是具有自动微分功能的张量计算库,其自动微分方法是基于静态图的方法,提供神经网络运算中更为底层的接口,主要用于自定义神经网络拓扑结构。
另外,SameDiff支持导入Tensorflow冻结模型格式的.pd
(protobuf)模型。对ONNX、TensorFlow SaveModel和Keras模型的导入正在完善中。可以简单的认为SameDiff和DL4J的关系类似于Tensorflow和Keras。
符合微分和计算图库是深度学习中的两个关键概念:
神经网络专门处理多维数组形式的数值数据。DataVec可以将来自一个CSV文件或一批图像的数据序列化,转换为数值数组。数据的摄取、清理、联接、缩放、标准化和转换是开展任何类型的数据分析时都必须完成的工作。是深度学习的先决条件。DataVec是专为这一流程设计的工具包。数据科学家和开发人员可以用其中的工具将图像、视频、声音、文本和时间序列等原始数据转变为特征向量,输入神经网络。
整体流程如下:
同时,DataVec也支持所有主要类型的输入(CSV、文本、图像、音频、视频和数据库)整体流程如下:
除了明显提供经典数据格式的读取器,DataVec还提供了一个接口用来摄取特定的自定义数据。
以下是我个人的一些做法,希望可以给各位提供一些帮助:
整理了很长一段时间,拿来复习面试刷题非常合适,其中包括了Java基础、异常、集合、并发编程、JVM、Spring全家桶、MyBatis、Redis、数据库、中间件MQ、Dubbo、Linux、Tomcat、ZooKeeper、Netty等等,且还会持续的更新…可star一下!
283页的Java进阶核心pdf文档
Java部分:Java基础,集合,并发,多线程,JVM,设计模式
数据结构算法:Java算法,数据结构
开源框架部分:Spring,MyBatis,MVC,netty,tomcat
分布式部分:架构设计,Redis缓存,Zookeeper,kafka,RabbitMQ,负载均衡等
微服务部分:SpringBoot,SpringCloud,Dubbo,Docker
还有源码相关的阅读学习
实战项目源码】](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)收录**
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。