赞
踩
本文是LLM系列的第一篇文章,针对《A Survey of Large Language Models》的翻译。
自从20世纪50年代提出图灵测试以来,人类一直在探索通过机器掌握语言智能。语言本质上是一个由语法规则控制的复杂的人类表达系统。开发能够理解和掌握语言的人工智能算法是一个重大挑战。在过去的二十年里,语言建模作为一种主要的语言理解和生成方法得到了广泛的研究,从统计语言模型发展到神经语言模型。最近,通过在大规模语料库上对Transformer模型进行预训练,提出了预训练语言模型(PLM),在解决各种自然语言处理(NLP)任务方面表现出强大的能力。由于研究人员发现模型缩放可以提高模型容量,他们通过将参数缩放增加到更大的尺寸来进一步研究缩放效应。有趣的是,当参数尺度超过一定水平时,这些放大的语言模型不仅实现了显著的性能改进,而且还表现出了一些小规模语言模型(如BERT)中不存在的特殊能力(如上下文学习)。为了区分不同参数尺度下的语言模型,研究界为具有显著规模的PLM(例如,包含数百亿或数千亿个参数)创造了“大型语言模型”(LLM)一词。近年来,学术界和工业界对LLM的研究都取得了很大进展,其中一个显著的进展是ChatGPT(一种基于LLM开发的强大的人工智能聊天机器人)的推出,引起了社会的广泛关注。LLM的技术发展对整个人工智能社区产生了重要影响,这将彻底改变我们开发和使用人工智能算法的方式。考虑到这一快速的技术进步,在本次综述中,我们通过介绍背景、关键发现和主流技术来回顾LLM的最新进展。特别是,我们关注LLM的四个主要方面,即预训练、适应调整、利用和能力评估。此外&#
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。