当前位置:   article > 正文

2024年新算法!PCA+CPO+K-means聚类,冠豪猪优化器(CPO)优化K-means,适合学习,也适合发paper

2024年新算法!PCA+CPO+K-means聚类,冠豪猪优化器(CPO)优化K-means,适合学习,也适合发paper

2024年新算法!PCA+CPO+K-means聚类,冠豪猪优化器(CPO)优化K-means,适合学习,也适合发paper

一、冠豪猪优化器

摘要:受冠豪猪(crest Porcupine, CP)的各种防御行为启发,提出了一种新的基于自然启发的元启发式算法——冠豪猪优化算法(Crested Porcupine Optimizer, CPO),用于精确优化各种优化问题,特别是大规模优化问题。从最不具攻击性到最具攻击性,冠豪猪有四种不同的保护机制:视觉、声音、气味和身体攻击。第一和第二防御技术(视觉和声音)反映了CPO的探索性行为,第三和第四防御策略(气味和物理攻击)反映了CPO的利用性行为。该算法提出了一种新的策略,称为循环种群减少技术,以模拟不是所有CPs都激活防御机制,而是只有受到威胁的CPs才激活防御机制。该策略提高了收敛速度和种群多样性。使用CEC2014、CEC2017和CEC2020 3个CEC基准测试函数对CPO进行验证,并将其结果与3类现有优化算法进行比较,结果如下:(i)被引用率最高的优化算法,包括灰狼优化算法(GWO)、鲸鱼优化算法(WOA)、差分进化算法(differential evolution)和樽海鞘算法(SSA);(ii)最近发表的算法,包括基于梯度的优化器(GBO),非洲秃鹫优化算法(AVOA), Runge Kutta方法(RUN),平衡优化器(EO),人工大猩猩部队优化器(GTO)和黏液霉菌算法(SMA);(iii)高性能优化器,如SHADE、LSHADE、al SHADE、LSHADE- cnepsin和LSHADE- spacma。统计分析结果表明,在3个CEC测试函数上,与其他优化算法相比,CPO算法在大多数测试函数上具有明显的优势,可以被提名为一种高性能的优化算法。定量分析表明,对于CEC2017、CEC2017、CEC2020和6个实际工程问题,CPO的性能提升率分别高达83%、70%、90%和100%。

参考文献:Crested Porcupine Optimizer: A new nature-inspired metaheuristic

Doi: 10.1016/j.knosys.2023.111257

二、K-means聚类

K-means聚类算法是一种无监督学习算法,广泛应用于数据分析和机器学习的各个领域。其核心思想是将给定的样本集划分为K个簇,使得每个簇内的样本点尽可能紧密地聚集在一起,而不同簇之间的样本点则尽可能远离。以下是K-means聚类算法的主要优点:

简单直观:K-means算法原理简单易懂,容易实现,计算速度快,且聚类效果通常较好。

可解释性强:算法的结果具有明确的解释性,每个簇的中心点可以代表该簇的特征,有助于理解和分析数据。

适用于大规模数据集:K-means算法在处理大规模数据集时表现良好,能够高效地划分数据。

然而,K-means聚类算法也存在一些明显的缺点:

K值选择困难:K值是事先给定的,如何选择合适的K值是一个难题。K值选择不当可能导致聚类结果不合理,难以反映数据的真实结构。

对初始值敏感:K-means算法对初始簇中心的选择非常敏感。如果初始值选择得不好,可能会导致算法陷入局部最优解,而无法得到全局最优的聚类结果。

对异常值和噪声敏感:K-means算法对异常值和噪声的鲁棒性较差,这些值可能会影响簇中心的计算,导致聚类结果不准确。

不适合非凸形状簇:K-means算法基于距离度量进行聚类,因此对于非凸形状的簇可能无法得到理想的聚类效果。

距离度量方式选择:关于K-means聚类算法的距离度量方式,最常用的是欧氏距离。然而,除了欧氏距离外,K-means算法也可以使用其他距离度量方式,例如曼哈顿距离和马氏距离等。

三、主成分分析PCA

主成分分析(Principal Component Analysis),是一种常用的数据降维方法。它的主要思想是通过线性变换将原始的高维数据映射到一个低维空间中,同时尽可能地保留原始数据的主要特征信息。

具体来说,PCA降维的过程可以分为以下几个步骤:

数据标准化:首先,对原始数据进行标准化处理,消除不同特征之间的量纲差异,使得每个特征都具有相同的权重。

计算协方差矩阵:接着,计算标准化后数据的协方差矩阵。协方差矩阵反映了不同特征之间的相关性,是PCA降维的关键。

计算特征值和特征向量:对协方差矩阵进行特征分解,得到特征值和特征向量。特征值的大小代表了对应特征向量方向上的数据方差,即数据的离散程度。

选择主成分:根据特征值的大小,选择前k个最大的特征值对应的特征向量作为主成分。这些主成分代表了数据中的主要变化方向,能够最大程度地保留原始数据的信息。

数据投影:最后,将原始数据投影到选定的主成分上,得到降维后的数据。这个过程可以通过将原始数据乘以主成分矩阵来实现。

PCA降维的优点在于它简单易懂,计算效率高,且能够有效地降低数据的维度,减少计算复杂性和存储空间。同时,PCA降维还能够去除部分噪声和冗余特征,提高数据的可解释性和可视化效果。因此,PCA降维在数据分析、机器学习、图像处理等领域都有广泛的应用。需要注意的是,PCA降维是一种无监督学习方法,它并不考虑数据的标签信息。因此,在某些情况下,PCA降维可能会丢失一些与标签相关的信息。此外,PCA降维对于非线性数据的处理能力有限,对于复杂的数据结构可能需要采用其他降维方法。

四、PCA+CPO+ K-means聚类

✨ 核心亮点

降维至精华:我们首先使用PCA将复杂的数据集降维到2维,保留了数据的主要信息,使其可视化变得简单直观。

优化聚类:接着,采用冠豪猪优化器(CPO)对K-means聚类进行优化,利用轮廓系数信息构建目标函数,自动寻找最佳的聚类数量和距离度量,以达到最优的数据分组效果。

聚类数量k:可以修改聚类数量优化范围

选择三个距离度量进行优化:sqeuclidean(欧氏距离平方)、cityblock(Block距离,也叫绝对值距离)、cosine(夹角余弦)。

代码详细中文注释,高效管理,可读性和二次开发都很好,部分代码如下:

  1. clc; clear; close all;
  2. % 加载Excel数据
  3. data = xlsread('数据.xlsx');
  4. % 假设全部列为特征数据
  5. X = data;
  6. % 数据标准化
  7. X_standardized = (X - mean(X)) ./ std(X);
  8. % 应用PCA进行降维
  9. [coeff, score, latent, tsquared, explained] = pca(X_standardized);
  10. % 提取前两个主成分
  11. Z = score(:, 1:2);
  12. % 初始化CPO参数
  13. N = 10; % 种群数量
  14. T = 50; % 最大迭代次数
  15. LB=[2,1]; % 变量下界
  16. UB=[20,3]; % 变量上界
  17. nvars=length(LB);
  18. fobj=@fitness;
  19. % 使用CPO优化算法优化K-means进行聚类,优化最佳聚类数和最佳距离度量
  20. [fMin,index,Convergence_curve,pos]=CPO(N,T,LB,UB,nvars,fobj,data,Z);
  21. % 计算轮廓系数
  22. sc_xishu = mean(silhouette(data, index'));
  23. % 确定独特的聚类数
  24. a = unique(index);
  25. op_cluster_num = length(a); % 优化后聚类个数
  26. C = cell(1, length(a));
  27. % 将数据分配到对应聚类
  28. for i = 1:length(a)
  29. C(1, i) = {find(index == a(i))};
  30. end

运行结果如下:

冠豪猪优化器(CPO)优化K-means结果:

冠豪猪优化器(CPO)优化K-means收敛曲线:

优化结果输出:

使用数据如下:

五、完整代码获取

2024年新算法!PCA+CPO+K-means聚类,冠豪猪优化器(CPO)优化K-means,适合学习,也适合发paper

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/302585
推荐阅读
相关标签
  

闽ICP备14008679号