当前位置:   article > 正文

生成模型太强大?篡改与伪造检测越来越需要了!这篇最新综述不容错过

cv伪造检测

关注公众号,发现CV技术之美

最近一段时间,以扩散模型为代表的生成模型越来越能逼真地生成图像和视频,一方面是一群人的狂欢,这是AI的进步,另一方面却是另一群人的担忧,这是AI的危险。

AI技术可以造福人类,当然也可以用来作恶。

社交媒体上的视频造假已经让大家不再坚信“眼见为实”,而金融领域的人脸伪造则成为必须面对的系统性威胁。

e46d9af57482a53629a0fb07436f11f0.png

▲篡改与人脸伪造图像示例

可以看到,经过编辑后的图像整体表现还算比较自然,但仔细放大,还是有一些不和谐的痕迹。

所以面向多媒体数据的篡改(Tampering  ,偏向于多媒体内容的编辑修改)和人脸伪造(Deepfake ,偏向于对多媒体数据中人脸部分的编辑修改)检测技术越来越重要了,成为研究社区不得不讨论的话题。

那么,AI可以打败AI吗?

今天向大家推荐一篇新出的论文『Fighting Malicious Media Data: A Survey on Tampering Detection and Deepfake Detection』,作者参考了377篇文献,系统性综述了篡改与人脸伪造检测领域的相关概念、数据集、技术分类与未来趋势。

6e6094b269fab836f7491f4287b65b4e.png

  • 论文地址:https://arxiv.org/abs/2212.05667

作者来自复旦大学与马里兰大学。

acd6eea83dc11d768057dbd6300c5004.png

▲篡改检测与人脸伪造检测技术示意图

可见,篡改检测(Tampering Detection)要对“整幅图片”进行判断是否经过篡改,如果有的话,以Mask的形式将篡改部分标识出来。

而人脸伪造检测(Deepfake Detection)是对“人脸区域”进行分类,给出是否是经过人为编辑伪造的。

8587ef848bc638bfdb860a207a38646e.png

▲论文总结的相关技术纵览

其中 Genetation(生成) 指篡改与伪造技术,Detection(检测)是指相关检测技术。First/Second/Third Gen指第一代、第二代、第三代数据集。

9f97db7015f281b6472d97e558b7c601.png

▲图像篡改的三种模式

作者列出了篡改检测相关数据集

5cae6fe3fb2401c75c01ee98b6de6e87.png

从统计数据看,年份越近的数据集,数量越大,人工编辑的模式越多。

3fa5bc12b969d38973dae37ee44477dd.png

▲相关数据集展示

作者列出的四种常见的人脸伪造方式:

2595200c37984c18f6d7e9c72bb9ff72.png

▲四种常见的人脸伪造方式

图中(a)为整张脸合成,(b)按特定输入对人脸进行编辑,(c)则为换脸,(d)有参考对象的人脸编辑。

在人脸伪造上,技术越走越远,越来越高清逼真,如下图:

8856038e8f252167e64af28012a6bf20.png

第三代数据集不仅数量大(数量级的提升),而且方法多样。

ba43cf7062cd0b18c911a9cf5c42df1a.png

这是不是也说明造假的人也越来越多,越来越努力了啊?。。。

当然,人脸伪造检测技术也在不断发展,下图为检测的可视化结果:

b5d9a7502c36ed981287397f6500577d.png

在视频领域时空一致也能帮我们判断一部分伪造:

ccac26cd87fec3015017c2eb299ba9f0.png

图中,眼睛一直闭着呢,嘴巴却不停张合。

4d1d086202f682b0d6f720eb1dbfcea6.png

98d28928e1e32f4b8302083bd21d2169.png

最后作者也提到了这一领域面临的挑战与方向

  1. 泛化性挑战,作假技术迭代进步很快,一个模型要对没见过的作假方法有效才行。

  2. 鲁棒性挑战,互联网上的图像视频往往要面对压缩、传输等降质问题,检测模型药足够鲁棒检测出来。

  3. 归属方法不够丰富,不只是真假,类似于是否侵犯知识产权的标签也非常有意义。

  4. 利用多模态信息,RGB信息中可能不太好分辨的造假,在频域可能就比较明显。可解释性。在一些需要进入司法阶段的应用场景,可解释性就非常重要了。

f051a8b98db2ded1ffd6fece54d600b6.jpeg

END

欢迎加入「人脸交流群

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/362283
推荐阅读
相关标签